Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (3): 251-260.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0888
Previous Articles Next Articles
SHAN Xin(), HUANG Dong-hui, XU Wei-hui, WANG Zhi-gang(), CHEN Wen-jing, HU Yun-long
Received:
2023-09-14
Online:
2024-03-26
Published:
2024-04-08
Contact:
WANG Zhi-gang
E-mail:1065890288@qq.com;wangzhigang@qqhru.edu.cn
SHAN Xin, HUANG Dong-hui, XU Wei-hui, WANG Zhi-gang, CHEN Wen-jing, HU Yun-long. Mn2+ Promotes the Biofilm Formation of Bacillus altitudinis LZP02[J]. Biotechnology Bulletin, 2024, 40(3): 251-260.
Gene | Primer sequence(5'-3') | Length/bp |
---|---|---|
Spo0A | F-GCTCGGCAGCATTACAAA | 215 |
R-TCAGCTTATCCGCAACCA | ||
Spo0F | F-CCCGACCTTGTGCTGTTG | 172 |
R-GCTTGGCAAAGTGCGTCA | ||
KinB | F-TTCCGCTCCAGTGTTCTT | 272 |
R-TTTGTGATAATGCCTTGC | ||
KinE | F-TTAAAGCGACTTGGTGAA | 159 |
R-TCTGACAGGAAGCGTAAT | ||
KapB | F-CTTATGACGGTGAAGTGC | 117 |
R-CCAGATTATGAAGGGAGC | ||
16S rRNA | F-TGTGTAGCGGTGAAATGCG | 140 |
R-CATCGTTTACGGCGTGGAC |
Table 1 Primer sequences
Gene | Primer sequence(5'-3') | Length/bp |
---|---|---|
Spo0A | F-GCTCGGCAGCATTACAAA | 215 |
R-TCAGCTTATCCGCAACCA | ||
Spo0F | F-CCCGACCTTGTGCTGTTG | 172 |
R-GCTTGGCAAAGTGCGTCA | ||
KinB | F-TTCCGCTCCAGTGTTCTT | 272 |
R-TTTGTGATAATGCCTTGC | ||
KinE | F-TTAAAGCGACTTGGTGAA | 159 |
R-TCTGACAGGAAGCGTAAT | ||
KapB | F-CTTATGACGGTGAAGTGC | 117 |
R-CCAGATTATGAAGGGAGC | ||
16S rRNA | F-TGTGTAGCGGTGAAATGCG | 140 |
R-CATCGTTTACGGCGTGGAC |
Fig. 1 Effect of different Mn2+ concentration on the biofilm formation of LZP02 A: The colony architectures on solid-gas surface. B: The colony architectures on liquid-gas surface. C: Absorbance of biofilm at OD540. D: Extracellular polysaccharide content. The different lowercase letters indicate significant differences among treatments(P < 0.05)
Fig. 5 Two-component system analysis in LZP02 strain A: Two-component system flow chart in LZP02 strain; B: Log2FC of genes related to two-component system in transcriptome
Fig. 6 Pathway analysis of spore formation in strain LZP02 A: The number of significantly down-regulated genes in different treatment groups. B: Significantly down-regulated genes in M-1 treatment group. C: The Venn map of down-regulated genes in M-4 and M-8 treatment groups. D: The heatmap of co-downregulating genes in M-4 and M-8 treatment groups. E: Effect of different Mn2+ concentrations on the formation of LZP02 spore. ***P<0.001
Fig. 7 Analysis of toxin metabolic pathways in strain LZP02 A: The heatmap of DEGs in toxin biosynthesis pathway. B: The skf gene cluster. C: Log2FC of related genes in transcriptome. D: Electron microscopic observation of damaged cells in LZP02
Fig. 8 RT-qPCR verification of differential expressed genes A: Log2FC values of five DGEs in the transcriptome. B: Gene expression of five DGEs in RT-qPCR
[1] |
Basu A, Prasad P, et al. Plant growth promoting rhizobacteria(PGPR)as green bioinoculants: recent developments, constraints, and prospects[J]. Sustainability, 2021, 13(3): 1140.
doi: 10.3390/su13031140 URL |
[2] | AlAli HA, Khalifa A, Almalki M. Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus[J]. S Afr N J Bot, 2021, 139: 200-209. |
[3] | 刘东昀, 袁永强, 仇荣亮, 等. 根际促生菌Enterobacter sp. EG16对小白菜生长及硒吸收的影响[J]. 农业环境科学学报, 2021, 40(7): 1420-1431. |
Liu DY, Yuan YQ, Qiu RL, et al. Effect of plant growth promoting rhizobacteria Enterobacter sp. EG16 on the growth and Selenium uptake of Brassica chinensis L[J]. J Agro Environ Sci, 2021, 40(7): 1420-1431. | |
[4] |
潘晶, 黄翠华, 彭飞, 等. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511 |
Pan J, Huang CH, Peng F, et al. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria[J]. Biotechnol Bull, 2020, 36(9): 75-87.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511 |
|
[5] | 刘泽平, 王志刚, 等. 水稻根际促生菌的筛选鉴定及促生能力分析[J]. 农业资源与环境学报, 2018, 35(2): 119-125. |
Liu ZP, Wang ZG, et al. Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria[J]. J Agric Resour Environ, 2018, 35(2): 119-125. | |
[6] | 王恒煦, 刘泽平, 徐伟慧, 等. 几种菌株对水稻的促生能力测定[J]. 江苏农业科学, 2019, 47(11): 94-99. |
Wang HX, Liu ZP, Xu WH, et al. Determination of growth-promoting ability of several strains to rice[J]. Jiangsu Agric Sci, 2019, 47(11): 94-99. | |
[7] | 王恒煦, 刘泽平, 王志刚, 等. 3株芽孢杆菌在水稻根际定殖促生及其在土壤中的存活[J]. 生态与农村环境学报, 2019, 35(7): 892-899. |
Wang HX, Liu ZP, et al. Colonization and growth promotion of three Bacillus strains in rice rhizosphere and their survival in soil[J]. J Ecol Rural Environ, 2019, 35(7): 892-899. | |
[8] |
Liu H, Wang ZG, Xu WH, et al. Bacillus pumilus LZP02 promotes rice root growth by improving carbohydrate metabolism and phenylpropanoid biosynthesis[J]. Mol Plant Microbe Interact, 2020, 33(10): 1222-1231.
doi: 10.1094/MPMI-04-20-0106-R URL |
[9] | 高敏. 细菌群体感应信号分子(AHLs)的释放模式及其对生物膜形成的强化作用[D]. 西安: 西安建筑科技大学, 2019. |
Gao M. Study on the release pattern of quorum sensing signaling molecules(AHLs)for bacteria and their bioaugmentation during biofilm formation process[D]. Xi'an: Xi'an University of Architecture and Technology, 2019. | |
[10] |
Liu YP, Feng HC, Fu RX, et al. Induced root-secreted D-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner[J]. Appl Microbiol Biotechnol, 2020, 104(2): 785-797.
doi: 10.1007/s00253-019-10265-8 |
[11] |
Xu ZH, Mandic-Mulec I, Zhang HH, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a btr-mediated FeuABC-dependent pathway[J]. Cell Rep, 2019, 29(5): 1192-1202.e5.
doi: 10.1016/j.celrep.2019.09.061 URL |
[12] |
Felz S, Vermeulen P, et al. Chemical characterization methods for the analysis of structural extracellular polymeric substances(EPS)[J]. Water Res, 2019, 157: 201-208.
doi: 10.1016/j.watres.2019.03.068 URL |
[13] |
张阳, 程鹏, 李晓芬, 等. 抗生物膜肽研究进展[J]. 生物技术通报, 2021, 37(2): 216-223.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0577 |
Zhang Y, Cheng P, Li XF, et al. Research progress on anti-biofilm peptides[J]. Biotechnol Bull, 2021, 37(2): 216-223.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0577 |
|
[14] |
黄东慧, 钟鹏, 王建丽, 等. 环境条件对Bacillus altitudinis LZP02生物膜形成的影响[J]. 浙江农业学报, 2022, 34(7): 1466-1473.
doi: 10.3969/j.issn.1004-1524.2022.07.14 |
Huang DH, Zhong P, Wang JL, et al. Effects of environmental conditions on biofilm formation of Bacillus altitudinis LZP02[J]. Acta Agric Zhejiangensis, 2022, 34(7): 1466-1473. | |
[15] | 徐伟慧, 刘泽平, 符春敏, 等. 根际芽孢杆菌对水稻根系的促生效应[J]. 河南农业科学, 2018, 47(4): 59-63. |
Xu WH, Liu ZP, Fu CM, et al. Promoting effect of Bacillus rhizobacteria on rice root[J]. J Henan Agric Sci, 2018, 47(4): 59-63. | |
[16] | 胡德分, 刘金美, 李凤娇, 等. 蒽酮-硫酸法测定乌天麻多糖含量的条件优化[J]. 云南民族大学学报: 自然科学版, 2023, 32(6): 687-694. |
Hu DF, Liu JM, Li FJ, et al. Determination and optimization of the polysaccharide content of Gastrodia Elata Bl.f.glauca by anthrone-sulfuric acid methods[J]. J Yunnan Minzu Univ Nat Sci Ed, 2023, 32(6): 687-694. | |
[17] |
郭英, 杨萍, 等. 野大豆多功能根际促生菌的筛选鉴定和促生效果研究[J]. 生物技术通报, 2018, 34(10): 108-115.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0437 |
Guo Y, Yang P, Zhang DY, et al. Screening, identification and growth-promoting effect of multifunction rhizosphere growth-promoting strain of wild soybean[J]. Biotechnol Bull, 2018, 34(10): 108-115. | |
[18] | 韩雅茹, 马亚平, 陈丽华, 等. 转录组和代谢组联合解析气温升高和干旱互作下灵武长枣果皮花青苷代谢机制[J]. 果树学报, 2022, 39(5): 811-825. |
Han YR, Ma YP, Chen LH, et al. Transcriptome and metabolome combined analysis of anthocyanin metabolism in fruit peel of Ziziphus jujuba Mill.‘Lingwuchangzao’ under the interaction of elevated temperature and drought[J]. J Fruit Sci, 2022, 39(5): 811-825. | |
[19] |
刘林芝, 欧阳欢, 等. ‘赣南早’脐橙在干旱胁迫下的生理及转录组研究[J]. 热带作物学报, 2022, 43(5): 893-903.
doi: 10.3969/j.issn.1000-2561.2022.05.003 |
Liu LZ, Ouyang H, et al. Physiological and transcriptome analysis of ‘Gannan Zao’ navel orange under drought stress[J]. Chin J Trop Crops, 2022, 43(5): 893-903. | |
[20] |
Jiao HW, Xu WH, Chen WJ, et al. Complete genome sequence data of Bacillus altitudinis LZP02, a bacterium from the rice rhizosphere, for studying the promotion of plant growth[J]. Mol Plant Microbe Interact, 2022, 35(5): 428-431.
doi: 10.1094/MPMI-01-22-0012-A URL |
[21] |
Helmann JD. Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis[J]. J Biol Chem, 2014, 289(41): 28112-28120.
doi: 10.1074/jbc.R114.587071 pmid: 25160631 |
[22] |
Shafeeq S, Pannanusorn S, Elsharabasy Y, et al. Impact of manganese on biofilm formation and cell morphology of Candida parapsilosis clinical isolates with different biofilm forming abilities[J]. FEMS Yeast Res, 2019, 19(6): foz057.
doi: 10.1093/femsyr/foz057 URL |
[23] |
Matthysse AG. Exopolysaccharides of Agrobacterium tumefaciens[J]. Curr Top Microbiol Immunol, 2018, 418: 111-141.
doi: 10.1007/82_2018_100 pmid: 29992358 |
[24] |
Rana S, Upadhyay LSB. Microbial exopolysaccharides: synthesis pathways, types and their commercial applications[J]. Int J Biol Macromol, 2020, 157: 577-583.
doi: S0141-8130(20)32937-8 pmid: 32304790 |
[25] | 陈凯, 胡学伟, 赖信可. Mn2+促进载体挂膜的机理研究[J]. 环境科学学报, 2016, 36(7): 2415-2421. |
Chen K, Hu XW, Lai XK. The promotion mechanism of Mn2+ for biofilm formation on carrier[J]. Acta Sci Circumstantiae, 2016, 36(7): 2415-2421. | |
[26] |
Saá Ibusquiza P, Nierop Groot M, Debán-Valles A, et al. Impact of growth conditions and role of sigB on Listeria monocytogenes fitness in single and mixed biofilms cultured with Lactobacillus plantarum[J]. Food Res Int, 2015, 71: 140-145.
doi: 10.1016/j.foodres.2015.03.001 URL |
[27] | 王志刚, 徐伟慧, 尹海畅, 等. 一种复合微生物菌肥及其制备方法以及在促进水稻生长中的应用: 中国,CN109536401B[P]. 2022-02-18. |
Wang ZG, Xu WH, Yin HC, et al. Compound microbial fertilizer, and preparation method and application thereof in promoting rice growth: CN109536401B[P]. 2022-02-18. | |
[28] |
Altaf MM, Ahmad I. In vitro and In vivo biofilm formation by Azoto-bacter isolates and its relevance to rhizosphere colonization[J]. Rhizosphere, 2017, 3: 138-142.
doi: 10.1016/j.rhisph.2017.04.009 URL |
[29] | 刘云鹏. 增强解淀粉芽孢杆菌SQR9根际定殖和促生的的根际互作机制研究[D]. 南京: 南京农业大学, 2015. |
Liu YP. Enhanced plant growth promotion and root colonization of Bacillus amyloliquefaciens SQR9 through rhizosphere interaction[D]. Nanjing: Nanjing Agricultural University, 2015. | |
[30] | 郑文博. 克里本类芽孢杆菌PS04生物膜形成和定殖研究[D]. 广州: 华南农业大学, 2020. |
Zheng WB. Study on the biofilm formation and colonization of Paenibacillus kribbensis PS04[D]. Guangzhou: South China Agricultural University, 2020. | |
[31] |
Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria[J]. Biocontrol Sci Technol, 2001, 11(5): 557-574.
doi: 10.1080/09583150120076120 URL |
[32] | 林陈强, 谢廼鸿, 邱宏端, 等. 地衣芽孢杆菌CHB6高芽孢形成率发酵条件的研究[J]. 热带作物学报, 2011, 32(9): 1746-1749. |
Lin CQ, Xie NH, Qiu HR, et al. The fermentation conditions for high sporulation rate of Bacillus licheniformis CHB6[J]. Chin J Trop Crops, 2011, 32(9): 1746-1749. | |
[33] | 肖静, 汪俊卿, 王瑞明, 等. 芽孢形成相关基因spo0A在产酶中的应用: 中国,CN108949785B[P]. 2020-03-06. |
Xiao J, Wang JQ, Wang RM, et al. Application of sporation related gene spo0A in enzyme production: CN108949785B[P]. 2020-03-06. | |
[34] |
Hamon MA, Lazazzera BA. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis[J]. Mol Microbiol, 2001, 42(5): 1199-1209.
pmid: 11886552 |
[35] | 裘娟萍, 杨明欣. 枯草芽孢杆菌同种相食现象及生防应用[J]. 东北农业大学学报, 2014, 45(10): 122-128. |
Qiu JP, Yang MX. Cannibalism by Bacillus subtilis and applications in biological control[J]. J Northeast Agric Univ, 2014, 45(10): 122-128. | |
[36] |
Vlamakis H, Chai YR, Beauregard P, et al. Sticking together: building a biofilm the Bacillus subtilis way[J]. Nat Rev Microbiol, 2013, 11(3): 157-168.
doi: 10.1038/nrmicro2960 pmid: 23353768 |
[37] |
赵佳伟, 敖晓琳, 赵珂. 金属离子对乳酸菌生物膜形成的影响及其机制研究进展[J]. 食品科学, 2019, 40(9): 341-346.
doi: 10.7506/spkx1002-6630-20180308-101 |
Zhao JW, Ao XL, Zhao K. Progress in understanding the effect and mechanism of metal ions on biofilm formation of lactic acid bacteria[J]. Food Sci, 2019, 40(9): 341-346. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||