Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 277-284.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0388
Previous Articles Next Articles
YANG Bing-jie(), YUAN Xiao-xia, GAO Meng-zhe, SHEN Ao-long, LI Hua, JI Zhao-jun()
Received:
2024-04-24
Online:
2024-11-26
Published:
2024-12-19
Contact:
JI Zhao-jun
E-mail:ybj000903@163.com;jzj808@163.com
YANG Bing-jie, YUAN Xiao-xia, GAO Meng-zhe, SHEN Ao-long, LI Hua, JI Zhao-jun. Exopolysaccharide Yield and Environmental Adaptation of Rhizobia Regulated by Gene envZ, iscS and asnC[J]. Biotechnology Bulletin, 2024, 40(11): 277-284.
菌株 Strain | 特征 Description | 来源 Source |
---|---|---|
R. yanglingense CCBAU 01603 | 野生型菌株 Wild-type strain NAr | 实验室保藏 Preserved in Lab |
Alk_40 | CCBAU 01603的进化菌株 Evolved clone of CCBAU 01603 | 实验室保藏 Preserved in Lab |
ΔenvZ | envZ基因敲除突变株 Gene envZ deletion mutant NAr | 已构建 Established in Lab |
ΔiscS | iscS基因敲除突变株 Gene iscS deletion mutant NAr | 已构建 Established in Lab |
ΔasnC | asnC基因敲除突变株 Gene asnC deletion mutant NAr | 已构建 Established in Lab |
Table 1 Strains in this study
菌株 Strain | 特征 Description | 来源 Source |
---|---|---|
R. yanglingense CCBAU 01603 | 野生型菌株 Wild-type strain NAr | 实验室保藏 Preserved in Lab |
Alk_40 | CCBAU 01603的进化菌株 Evolved clone of CCBAU 01603 | 实验室保藏 Preserved in Lab |
ΔenvZ | envZ基因敲除突变株 Gene envZ deletion mutant NAr | 已构建 Established in Lab |
ΔiscS | iscS基因敲除突变株 Gene iscS deletion mutant NAr | 已构建 Established in Lab |
ΔasnC | asnC基因敲除突变株 Gene asnC deletion mutant NAr | 已构建 Established in Lab |
Fig. 1 Comparative analysis of key gene sequences and translated amino acid sequences of R. yanglingense CCBAU01603 and evolved Alk_40 A is from the comparison of the envZ gene sequence and amino acid composition; B is from the comparison of the iscS gene sequence and amino acid composition; C is from the comparison of the asnC gene sequence and amino acid composition
Fig. 4 Growth of rhizobia in the media with different concentrations of NaCl A: Liquid medium containing 0.1% NaCl. B: Liquid medium containing 0.2% NaCl. C: Liquid medium containing 0.3% NaCl. D: Liquid medium containing 0.4% NaCl
环境条件Environmental conditions | 皮尔逊相关系数Pearson’s correlation coefficient | 显著性(双尾) Sig(2-tailed)(P) | |
---|---|---|---|
盐浓度NaCl concentrations | 0.1% | 0.734ns | 0.158 |
0.2% | 0.613ns | 0.271 | |
0.3% | 0.508ns | 0.382 | |
0.4% | -0.211ns | 0.733 | |
pH 值 pH Value | 4.02 | 0.981** | 0.003 |
5.01 | -0.087ns | 0.89 | |
8.99 | 0.389ns | 0.517 | |
9.98 | 0.138ns | 0.825 | |
热处理温度Heat treatment temperature | 28℃ | 0.976** | 0.004 |
37℃ | 0.840ns | 0.075 | |
65℃ | 0.979** | 0.004 |
Table 2 Correlation between exopolysaccharide yield and OD600 values
环境条件Environmental conditions | 皮尔逊相关系数Pearson’s correlation coefficient | 显著性(双尾) Sig(2-tailed)(P) | |
---|---|---|---|
盐浓度NaCl concentrations | 0.1% | 0.734ns | 0.158 |
0.2% | 0.613ns | 0.271 | |
0.3% | 0.508ns | 0.382 | |
0.4% | -0.211ns | 0.733 | |
pH 值 pH Value | 4.02 | 0.981** | 0.003 |
5.01 | -0.087ns | 0.89 | |
8.99 | 0.389ns | 0.517 | |
9.98 | 0.138ns | 0.825 | |
热处理温度Heat treatment temperature | 28℃ | 0.976** | 0.004 |
37℃ | 0.840ns | 0.075 | |
65℃ | 0.979** | 0.004 |
Fig. 5 Growth of rhizobia in the medium with different pH A: Liquid medium with pH=4.02; B: liquid medium with pH=5.01; C: liquid medium with pH=6.99; D: liquid medium with pH=8.99; E: liquid medium with pH=9.98
Fig. 6 Growth of rhizobia after treatment at different temperature A: Negative control group treated at 28℃ for 10 min; B: treated at 37℃ for 10 min; C: treated at 65℃ for 10 min
[1] | Ji ZJ, Yan H, Cui QG, et al. Competition between rhizobia under different environmental conditions affects the nodulation of a legume[J]. Syst Appl Microbiol, 2017, 40(2): 114-119. |
[2] | Ji ZJ, Wu ZY, Chen WF, et al. Physiological and symbiotic variation of a long-term evolved Rhizobium strain under alkaline condition[J]. Syst Appl Microbiol, 2020, 43(5): 126125. |
[3] | Hollingsworth RI, Dazzo FB, Hallenga K, et al. The complete structure of the trifoliin A lectin-binding capsular polysaccharide of Rhizobium trifolii 843[J]. Carbohydr Res, 1988, 172(1): 97-112. |
[4] | Palhares Farias T, de Melo Castro E, Marucci Pereira Tangerina M, et al. Rhizobia exopolysaccharides: promising biopolymers for use in the formulation of plant inoculants[J]. Braz J Microbiol, 2022, 53(4): 1843-1856. |
[5] | Park S, Shin Y, Jung S. Structural, rheological properties and antioxidant activities analysis of the exopolysaccharide produced by Rhizobium leguminosarum bv. viciae VF39[J]. Int J Biol Macromol, 2024, 257(Pt 2): 128811. |
[6] | Muszynski A, Laus M, Kijne JW, et al. Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant(exo5)[J]. Glycobiology, 2011, 21(1): 55-68. |
[7] | Janczarek M, Rachwał K, Kopcińska J. Genetic characterization of the Pss region and the role of PssS in exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii with clover[J]. Plant Soil, 2015, 396(1): 257-275. |
[8] | Janczarek M. The ros/MucR zinc-finger protein family in bacteria: structure and functions[J]. Int J Mol Sci, 2022, 23(24): 15536. |
[9] | Kenney LJ, Anand GS. EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically[J]. EcoSal Plus, 2020, 9(1): 10.1128/ecosalplus.ESP-10.1128/ecosalplus0001-2019. |
[10] | Fu DD, Wu JM, Wu XY, et al. The two-component system histidine kinase EnvZ contributes to Avian pathogenic Escherichia coli pathogenicity by regulating biofilm formation and stress responses[J]. Poult Sci, 2023, 102(2): 102388. |
[11] | Das M, Sreedharan S, Shee S, et al. Cysteine desulfurase(IscS)-mediated fine-tuning of bioenergetics and SUF expression prevents Mycobacterium tuberculosis hypervirulence[J]. Sci Adv, 2023, 9(50): eadh2858. |
[12] | Yan SQ, Zhen JF, Li YZ, et al. Mycobacterium Lrp/AsnC family transcriptional factor modulates the arginase pathway as both a sensor and a transcriptional repressor[J]. J Genet Genomics, 2021, 48(11): 1020-1031. |
[13] | 刘景煜, 李晨, 肖林刚, 等. 双水相萃取法分离纯化金针菇子实体多糖[J]. 食品与发酵工业, 2017, 43(5): 255-260. |
Liu JY, Li C, Xiao LG, et al. Isolation and purification of aqueous two-phase extraction of polysaccharides from Flammulina velutipes[J]. Food Ferment Ind, 2017, 43(5): 255-260. | |
[14] | Lee D, Lee YM, Hye Shin S, et al. A simple protein histidine kinase activity assay for high-throughput inhibitor screening[J]. Bioorg Chem, 2023, 130: 106232. |
[15] | Park H, Saha SK, Inouye M. Two-domain reconstitution of a functional protein histidine kinase[J]. Proc Natl Acad Sci USA, 1998, 95(12): 6728-6732. |
[16] | Tomomori C, Tanaka T, Dutta R, et al. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ[J]. Nat Struct Biol, 1999, 6(8): 729-734. |
[17] | Lill R, Freibert SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis[J]. Annu Rev Biochem, 2020, 89: 471-499. |
[18] | Fujishiro T, Nakamura R, Kunichika K, et al. Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis[J]. Biophys Physicobiol, 2022, 19: 1-18. |
[19] | Nogales J, Campos R, BenAbdelkhalek H, et al. Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris[J]. Mol Plant Microbe Interact, 2002, 15(3): 225-232. |
[20] | Modrzejewska M, Kawalek A, Bartosik AA. The lrp/AsnC-type regulator PA2577 controls the EamA-like transporter gene PA2576 in Pseudomonas aeruginosa[J]. Int J Mol Sci, 2021, 22(24): 13340. |
[21] | Thaw P, Sedelnikova SE, Muranova T, et al. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family[J]. Nucleic Acids Res, 2006, 34(5): 1439-1449. |
[22] | Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, et al. Rhizobial exopolysaccharides: genetic regulation of their synthesis and relevance in symbiosis with legumes[J]. Int J Mol Sci, 2021, 22(12): 6233. |
[23] | Laus MC, Logman TJ, Van Brussel AAN, et al. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra[J]. J Bacteriol, 2004, 186(19): 6617-6625. |
[24] | Sánchez-Andújar B, Coronado C, Philip-Hollingsworth S, et al. Structure and role in symbiosis of the exoB gene of Rhizobium leguminosarum bv trifolii[J]. Mol Gen Genet, 1997, 255(2): 131-140. |
[25] | Marczak M, Żebracki K, Koper P, et al. A new face of the old gene: deletion of the PssA, encoding monotopic inner membrane phosphoglycosyl transferase in Rhizobium leguminosarum, leads to diverse phenotypes that could be attributable to downstream effects of the lack of exopolysaccharide[J]. Int J Mol Sci, 2023, 24(2): 1035. |
[26] | Wisniewski-Dyé F, Downie JA. Quorum-sensing in Rhizobium[J]. Antonie Van Leeuwenhoek, 2002, 81(1-4): 397-407. |
[27] | Ji YY, Zhang BL, Zhang P, et al. Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs[J]. ISME J, 2023, 17(3): 417-431. |
[28] | Hoang HH, Becker A, González JE. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression[J]. J Bacteriol, 2004, 186(16): 5460-5472. |
[29] | Bustamante JA, Ceron JS, Gao IT, et al. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts[J]. PLoS Genet, 2023, 19(10): e1010776. |
[30] | Gao MJ, Liu ZL, Zhao ZS, et al. Exopolysaccharide synthesis repressor genes(exoR and exoX)related to curdlan biosynthesis by Agrobacterium sp[J]. Int J Biol Macromol, 2022, 205: 193-202. |
[31] | Morcillo RJL, Manzanera M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites, 2021, 11(6): 337. |
[1] | CHANG Hai-xia, LI Ming-yuan, MAIRIYANGU·Yasheng , ZHOU Qian, WANG Ji-lian. Screening and Growth-promoting Characteristics of Multifunctional Exopolysaccharides-producing Bacteria [J]. Biotechnology Bulletin, 2024, 40(3): 273-285. |
[2] | YUAN Cun-xia, LI Yan-nan, ZHANG Xiao-chong, YANG Rui, LIU Jian-li, LI Jing-yu. Physiological and Biochemical Response Characteristics of Bacillus sp. ZJS3 Under As3+ Stress [J]. Biotechnology Bulletin, 2022, 38(7): 236-246. |
[3] | FAN Min, WANG Li-ning. Breeding of Lepista sordida with High-yield Exopolysaccharide by Plasma Mutagenesis [J]. Biotechnology Bulletin, 2021, 37(11): 119-124. |
[4] | LI Bin,CHEN Xiang-nan,ZHANG Jian-fa,WANG Shi-ming. Screening of Exopolysaccharide-producing Strains and Structural Analysis of the Exopolysaccharides [J]. Biotechnology Bulletin, 2016, 32(5): 165-171. |
[5] | Xin Yueqiang, Liang Rongrong, Wang Ruiming. Effects of Galactooligosaccharide on Exopolysaccharide Produced by Intestinal Probiotics [J]. Biotechnology Bulletin, 2015, 31(6): 144-150. |
[6] | Huang Yicheng, Liu Yang, Pang Xin, Ma Zhongrui, Han Donglei, Chen Min. Isolation and Characterization of Endophytic Strains Producing Exopolysaccharide [J]. Biotechnology Bulletin, 2014, 30(4): 147-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||