Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 86-97.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0691
Previous Articles Next Articles
LI Chong1(), YANG Ya-nan1, WANG Cui-xia1, ZHENG Hai-xin1,2
Received:
2024-07-21
Online:
2024-10-26
Published:
2024-11-20
Contact:
LI Chong
E-mail:lichonglx@163.com
LI Chong, YANG Ya-nan, WANG Cui-xia, ZHENG Hai-xin. Synergistic Remediation of Multiple Pollutants in Agricultural Environment by Microorganisms and Biochar[J]. Biotechnology Bulletin, 2024, 40(10): 86-97.
Fig. 1 The role of microorganisms in the remediation of agricultural environmental pollution Solid arrows indicate the biochemical reaction process, while dotted arrows indicate the transfer process
污染物 Pollutant | 功能微生物 Microorganism | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
镉 Cd | 芽孢杆菌Bacillus sp. K1 | 磁性稻草秸秆Magnetic rice straw | 包埋法Embedding | 88.1 | [ |
镉 Cd | 丛毛单胞菌Testosteroni ZG2 | 鸡的粪便衍生物 Chicken manure-derived | 吸附法Adsorption | 81.4 | [ |
镉 Cd | 芽孢杆菌Megaterium | 玉米秸秆Maize straw | 吸附法Adsorption | 25.53 | [ |
镉 Cd | MA菌群(Bacillus subtilis, B. cereus, and Citrobacter sp.) | 玉米秸秆Maize straw | 吸附法Adsorption | 54.2 | [ |
汞 Hg | Lecythophora sp. DC-F1 | 松木Pine sawdust | 混合法Hybridization | 13.3-26.1 | [ |
砷 As | Bacillus aryabhattai | 贝壳Shell | 吸附法Adsorption | 63.51 | [ |
菲 PHE | Mycobacterium gilvum | 水稻秸秆、污泥、猪粪 Rice straw, sewage sludge, and pig manure | 吸附法Adsorption | 62.6 | [ |
16 US-EPA PAHs | J-3菌群(主要含Shinella, Azospirillum,and Rhodospirillales_norank) | 玉米秸秆Corn straw | 吸附法Adsorption | 88.25 | [ |
菲 PHE | Pseudomonas putida | 竹子Bamboo | 吸附法Adsorption | 96.82 | [ |
菲 PHE | Suaeda salsa L. | 棉秆Cotton stalk | 吸附法Adsorption | 91.67 | [ |
多环芳烃 PAHs | Bacillus sp. KSB7 | 花生壳Peanut shell | 吸附法Adsorption | 36.7 | [ |
芘Pyrene | Bacillus sp. W1 Bacillus sp. W2 | 菠萝皮Pineapple peels | 吸附法Adsorption | 82.32 | [ |
2,2',4,4'四溴化二苯醚 BDE-47 | 假单胞菌Plecoglossicida | 水葫芦Eichhornia crassipes | 吸附法Adsorption | 42.8 | [ |
六氯环己烷 α-HCH | 鞘氨醇单胞菌Sphingomonas(TSK-1) 诺卡菌Nocardioides(PD653) | 椰子壳Coconut shell | 吸附法Adsorption | 67.1 | [ |
Table 1 Application of biochar-loaded microbe in the remediation of heavy metal in soil
污染物 Pollutant | 功能微生物 Microorganism | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
镉 Cd | 芽孢杆菌Bacillus sp. K1 | 磁性稻草秸秆Magnetic rice straw | 包埋法Embedding | 88.1 | [ |
镉 Cd | 丛毛单胞菌Testosteroni ZG2 | 鸡的粪便衍生物 Chicken manure-derived | 吸附法Adsorption | 81.4 | [ |
镉 Cd | 芽孢杆菌Megaterium | 玉米秸秆Maize straw | 吸附法Adsorption | 25.53 | [ |
镉 Cd | MA菌群(Bacillus subtilis, B. cereus, and Citrobacter sp.) | 玉米秸秆Maize straw | 吸附法Adsorption | 54.2 | [ |
汞 Hg | Lecythophora sp. DC-F1 | 松木Pine sawdust | 混合法Hybridization | 13.3-26.1 | [ |
砷 As | Bacillus aryabhattai | 贝壳Shell | 吸附法Adsorption | 63.51 | [ |
菲 PHE | Mycobacterium gilvum | 水稻秸秆、污泥、猪粪 Rice straw, sewage sludge, and pig manure | 吸附法Adsorption | 62.6 | [ |
16 US-EPA PAHs | J-3菌群(主要含Shinella, Azospirillum,and Rhodospirillales_norank) | 玉米秸秆Corn straw | 吸附法Adsorption | 88.25 | [ |
菲 PHE | Pseudomonas putida | 竹子Bamboo | 吸附法Adsorption | 96.82 | [ |
菲 PHE | Suaeda salsa L. | 棉秆Cotton stalk | 吸附法Adsorption | 91.67 | [ |
多环芳烃 PAHs | Bacillus sp. KSB7 | 花生壳Peanut shell | 吸附法Adsorption | 36.7 | [ |
芘Pyrene | Bacillus sp. W1 Bacillus sp. W2 | 菠萝皮Pineapple peels | 吸附法Adsorption | 82.32 | [ |
2,2',4,4'四溴化二苯醚 BDE-47 | 假单胞菌Plecoglossicida | 水葫芦Eichhornia crassipes | 吸附法Adsorption | 42.8 | [ |
六氯环己烷 α-HCH | 鞘氨醇单胞菌Sphingomonas(TSK-1) 诺卡菌Nocardioides(PD653) | 椰子壳Coconut shell | 吸附法Adsorption | 67.1 | [ |
污染物 Pollutant | 功能微生物 Microorganisms | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
氨氮 NH4+-N | 异养硝化细菌 Heterotrophic nitrifying bacteria | 稻壳衍生 Rice husk-derived | 吸附法 Adsorption | 90.93 | [ |
氨氮 NH4+-N | 鞘氨单胞菌 Sphingomonas sp. | 玉米秸秆 Maize straw | 吸附法 Adsorption | 63 | [ |
氨氮 NH4+-N | 苍白杆菌 Ochrobactrum sp. | 芦苇秸秆 Reed straw | 包埋法 Embedding | 79.39 | [ |
氨氮 NH4+-N | 硝化细菌 Nitrifying bacteria | 稻壳衍生 Rice hull derived | 包埋法 Embedding | 85 | [ |
氨氮 NH4+-N | 脱氮副球菌、假单胞菌和拉乌尔菌 Paracoccus denitrificans, Pseudomonas and Raoultella | 花生壳 Peanut shell | 吸附法包埋法 Adsorption Embedding | 97.9-99.1 | [ |
氨氮 NH4+-N | 木槿假单胞菌L1菌 Pseudomonas hibiscicola strain L1 | 花生壳 Peanut shell | 吸附法 Adsorption | 99.99 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 药渣 Erding medicine residues | 吸附法 Adsorption | 83.83 | [ |
三氯二苯脲 Initial triclocarban | 荧光假单胞菌 Pseudomonas fluorescens strain MC46 | 桉树枝 Eucalyptus branches | 吸附法 Adsorption | 96 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 中药渣 Chinese medicine residues | 吸附法 Adsorption | 85.42 ± 0.82 | [ |
氯四环素 Chlortetracycline | 枯草芽孢杆菌 Bacillus subtilis | 金银花残渣 Honeysuckle residue-derived | 吸附法 Adsorption | 78.35 | [ |
土霉素 Oxytetracycline | 分枝杆菌 Mycolicibacterium sp. | 磁性 Magnetic | 吸附法 Adsorption | 95.7 | [ |
土霉素 Oxytetracycline | 反硝化无色杆菌 Achromobacter denitrificans | 秸秆 Rice straw | 吸附法 Adsorption | 95.01-100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 希瓦氏菌MR-1 Shewanella oneidensis MR-1 | 纳米级零价富铁 Nanoscale zero-valent iron-enriched | 吸附法 Adsorption | 100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 副霉芽孢杆菌SDB4 Bacillus sp. SDB4 | 猪粪 Pig manure | 吸附法 Adsorption | 100 | [ |
土霉素 Oxytetracycline | 硝化微生物组 Nitrifying microbiome | 碱性改性 Alkaline-modified | 包埋法 Embedding method | >95 | [ |
环丙沙星 Ciprofloxacin | 克雷伯氏菌FC61 Klebsiella sp. FC61 | 纳米四氧化铁改性稻壳Nano iron tetroxide-modified rice husk | 吸附法 Adsorption method | 81.82 | [ |
Table 2 Application of biochar-loaded microbefor the remediation of ammonia-nitrogen and antibiotics in water
污染物 Pollutant | 功能微生物 Microorganisms | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
氨氮 NH4+-N | 异养硝化细菌 Heterotrophic nitrifying bacteria | 稻壳衍生 Rice husk-derived | 吸附法 Adsorption | 90.93 | [ |
氨氮 NH4+-N | 鞘氨单胞菌 Sphingomonas sp. | 玉米秸秆 Maize straw | 吸附法 Adsorption | 63 | [ |
氨氮 NH4+-N | 苍白杆菌 Ochrobactrum sp. | 芦苇秸秆 Reed straw | 包埋法 Embedding | 79.39 | [ |
氨氮 NH4+-N | 硝化细菌 Nitrifying bacteria | 稻壳衍生 Rice hull derived | 包埋法 Embedding | 85 | [ |
氨氮 NH4+-N | 脱氮副球菌、假单胞菌和拉乌尔菌 Paracoccus denitrificans, Pseudomonas and Raoultella | 花生壳 Peanut shell | 吸附法包埋法 Adsorption Embedding | 97.9-99.1 | [ |
氨氮 NH4+-N | 木槿假单胞菌L1菌 Pseudomonas hibiscicola strain L1 | 花生壳 Peanut shell | 吸附法 Adsorption | 99.99 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 药渣 Erding medicine residues | 吸附法 Adsorption | 83.83 | [ |
三氯二苯脲 Initial triclocarban | 荧光假单胞菌 Pseudomonas fluorescens strain MC46 | 桉树枝 Eucalyptus branches | 吸附法 Adsorption | 96 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 中药渣 Chinese medicine residues | 吸附法 Adsorption | 85.42 ± 0.82 | [ |
氯四环素 Chlortetracycline | 枯草芽孢杆菌 Bacillus subtilis | 金银花残渣 Honeysuckle residue-derived | 吸附法 Adsorption | 78.35 | [ |
土霉素 Oxytetracycline | 分枝杆菌 Mycolicibacterium sp. | 磁性 Magnetic | 吸附法 Adsorption | 95.7 | [ |
土霉素 Oxytetracycline | 反硝化无色杆菌 Achromobacter denitrificans | 秸秆 Rice straw | 吸附法 Adsorption | 95.01-100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 希瓦氏菌MR-1 Shewanella oneidensis MR-1 | 纳米级零价富铁 Nanoscale zero-valent iron-enriched | 吸附法 Adsorption | 100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 副霉芽孢杆菌SDB4 Bacillus sp. SDB4 | 猪粪 Pig manure | 吸附法 Adsorption | 100 | [ |
土霉素 Oxytetracycline | 硝化微生物组 Nitrifying microbiome | 碱性改性 Alkaline-modified | 包埋法 Embedding method | >95 | [ |
环丙沙星 Ciprofloxacin | 克雷伯氏菌FC61 Klebsiella sp. FC61 | 纳米四氧化铁改性稻壳Nano iron tetroxide-modified rice husk | 吸附法 Adsorption method | 81.82 | [ |
[1] | Zhang HY, Yuan XZ, Xiong T, et al. Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods[J]. Chem Eng J, 2020, 398: 125657. |
[2] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 中国政府网, 2014. |
Ministry of Environmental Protection, Ministry of Natural Resources. National Soil Pollution Survey Report[R]. Beijing: Chinese government network, 2014. | |
[3] | Chen YG, He XLS, Huang JH, et al. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China[J]. Ecotoxicol Environ Saf, 2021, 219: 112336. |
[4] | 广东省生态环境厅. 2023年广东省生态环境状况公报[R]. 广州: 广东省生态环境厅, 2024. |
Ecological environment of Guangdong province. Bulletin on the Ecological Environment Status of Guangdong Province in 2023[R]. Guangzhou: Ecological environment of Guangdong province, 2024. | |
[5] | Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation[J]. Microbiology, 2010, 156(Pt 3): 609-643. |
[6] | Gałązka A, Jankiewicz U. Endocrine disrupting compounds(nonylphenol and bisphenol A)-sources, harmfulness and laccase-assisted degradation in the aquatic environment[J]. Microorganisms, 2022, 10(11): 2236. |
[7] | Zhan PR, Liu W. Use of fluidized bed biofilter and immobilized Rhodopseudomonas palustris for ammonia removal and fish health maintenance in a recirculation aquaculture system[J]. Aquac Res, 2013, 44(3): 327-334. |
[8] | Liao XB, Zou RS, Li BX, et al. Biodegradation of chlortetracycline by acclimated microbiota[J]. Process Saf Environ Prot, 2017, 109: 11-17. |
[9] | Azeem M, Arockiam Jeyasundar PGS, Ali A, et al. Cow bone-derived biochar enhances microbial biomass and alters bacterial community composition and diversity in a smelter contaminated soil[J]. Environ Res, 2023, 216(Pt 1): 114278. |
[10] | Wang H, Huang QN, Zhang Y, et al. Biochar decreases soil cadmium availability and regulates expression levels of Cd uptake/transport-related genes to reduce Cd translocation in rice[J]. Rice Sci, 2024 |
[11] | Peng Q, Wang P, Yang C, et al. Remediation effect of walnut shell biochar on Cu and Pb co-contaminated soils in different utilization types[J]. J Environ Manag, 2024, 362: 121322. |
[12] | Li SS, Wang PP, Liu XG, et al. Polyoxymethylene passive samplers to assess the effectiveness of biochar by reducing the content of freely dissolved fipronil and ethiprole[J]. Sci Total Environ, 2018, 630: 960-966. |
[13] | 陈浩宇, 段友丽. 不同生物炭对水中氨氮的吸附特性及影响因素对比[J]. 净水技术, 2022, 41(6): 71-78, 95. |
Chen HY, Duan YL. Contrast of adsorption property and influencing factors of different biochar for ammonia nitrogen removal in water[J]. Water Purif Technol, 2022, 41(6): 71-78, 95. | |
[14] | Tu C, Wei J, Guan F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environ Int, 2020, 137: 105576. |
[15] | 张倩茹, 冀琳宇, 高程程, 等. 改性生物炭的制备及其在环境修复中的应用[J]. 农业环境科学学报, 2021, 40(5): 913-925. |
Zhang QR, Ji LY, Gao CC, et al. Preparation of modified biochar and its application in environmental remediation[J]. J Agro Environ Sci, 2021, 40(5): 913-925. | |
[16] | Muneer B, Iqbal MJ, Shakoori FR, et al. Isolation, identification and cadmium processing of Pseudomonas aeruginosa(EP-Cd1)isolated from soil contaminated with electroplating industrial wastewater[J]. Pakistan Journal of Zoology, 2016, 48(5):1495-1501. |
[17] | Taha M, Shahsavari E, Aburto-Medina A, et al. Bioremediation of biosolids with Phanerochaete chrysosporium culture filtrates enhances the degradation of polycyclic aromatic hydrocarbons(PAHs)[J]. Appl Soil Ecol, 2018, 124: 163-170. |
[18] |
Rivelli V, Franzetti A, Gandolfi I, et al. Persistence and degrading activity of free and immobilised allochthonous bacteria during bioremediation of hydrocarbon-contaminated soils[J]. Biodegradation, 2013, 24(1): 1-11.
doi: 10.1007/s10532-012-9553-x pmid: 22555628 |
[19] | Pérez Vargas J, Viguera Carmona SE, Zamudio Moreno E, et al. Bioremediation of soils from oil spill impacted sites using bioaugmentation with biosurfactants producing, native, free-living nitrogen fixing bacteria[J]. Rev Int Contam Ambie, 2017, 33(esp01): 105-114. |
[20] | Gao MZ, Ling N, Tian HY, et al. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium[J]. Front Microbiol, 2024, 15: 1374275. |
[21] | Wang LL, Liu YM, Shu XL, et al. Complexation and conformation of lead ion with poly-γ-glutamic acid in soluble state[J]. PLoS One, 2019, 14(9): e0218742. |
[22] | 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. |
He J, Chu J, Liu HL, et al. Research advances in biogeotechnologies[J]. Chin J Geotech Eng, 2016, 38(4): 643-653. | |
[23] | Cid-Barrio L, Bouzas-Ramos D, Salinas-Castillo A, et al. Quantitative assessment of cellular uptake and differential toxic effects of HgSe nanoparticles in human cells[J]. J Anal at Spectrom, 2020, 35(9): 1979-1988. |
[24] | Huang JH. Impact of microorganisms on arsenic biogeochemistry: a review[J]. Water Air Soil Pollut, 2014, 225(2): 1848. |
[25] | 姜恒丽, 崔元璐, 齐学洁, 等. 海藻酸钠-壳聚糖微胶囊载体在组织工程研究中的应用[J]. 中国组织工程研究, 2014, 18(3): 412-419. |
Jiang HL, Cui YL, Qi XJ, et al. Alginate-chitosan microcapsule in tissue engineering research[J]. Chin J Tissue Eng Res, 2014, 18(3): 412-419. | |
[26] |
Zhu XM, Chen BL, Zhu LZ, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review[J]. Environ Pollut, 2017, 227: 98-115.
doi: S0269-7491(16)32228-X pmid: 28458251 |
[27] | Bai XF, Li ZF, Zhang YZ, et al. Recovery of ammonium in urine by biochar derived from faecal sludge and its application as soil conditioner[J]. Waste Biomass Valorization, 2018, 9(9): 1619-1628. |
[28] | 金明兰, 赵海川, 李华南, 等. 秸秆生物炭与生物菌剂协同处理土壤中重金属和抗生素的研究[J/OL]. 北方园艺, 2024. http://kns.cnki.net/kcms/detail/23.1247.s.20240409.0858.003.html. |
Jin ML, Zhao HC, Li HN, et al. Biochar and microbial agents soil synergistic treatment of heavy metals and antibiotics in pollutant soil by straw[J/OL]. Northern Horticulture, 2024. http://kns.cnki.net/kcms/detail/23.1247.s.20240409.0858.003.html. | |
[29] |
Samonin VV, Elikova EE. A study of the adsorption of bacterial cells on porous materials[J]. Mikrobiologiia, 2004, 73(6): 810-816.
pmid: 15688940 |
[30] | Abit SM, Bolster CH, Cai P, et al. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil[J]. Environ Sci Technol, 2012, 46(15): 8097-8105. |
[31] | Sathishkumar K, Li Y, Sanganyado E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer[J]. Chem Eng J, 2020, 395: 125077. |
[32] |
Flowers L, Ohnishi ST, Penning TM. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I)redox cycling, and o-semiquinone anion radicals[J]. Biochemistry, 1997, 36(28): 8640-8648.
pmid: 9214311 |
[33] | Kizito S, Luo HZ, Lu JX, et al. Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand[J]. Sustainability, 2019, 11(11): 3211. |
[34] | Łapczyńska-Kordon B, Ślipek Z, Słomka-Polonis K, et al. Physicochemical properties of biochar produced from goldenrod plants[J]. Materials(Basel), 2022, 15(7): 2615. |
[35] |
Kloss S, Zehetner F, Dellantonio A, et al. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties[J]. J Environ Qual, 2012, 41(4): 990-1000.
doi: 10.2134/jeq2011.0070 pmid: 22751041 |
[36] | Zheng ZJ, Ali A, Su JF, et al. Self-immobilized biochar fungal pellet combined with bacterial strain H29 enhanced the removal performance of cadmium and nitrate[J]. Bioresour Technol, 2021, 341: 125803. |
[37] | Wang L, Chen HR, Wu JZ, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil[J]. J Hazard Mater, 2021, 414: 125494. |
[38] | Zhang Y, Yin QX, Guo LL, et al. Chicken manure-derived biochar enhanced the potential of Comamonas testosteroni ZG2 to remediate Cd contaminated soil[J]. Environ Geochem Health, 2024, 46(6): 198. |
[39] | Qi WY, Chen H, Wang Z, et al. Biochar-immobilized Bacillus megaterium enhances Cd immobilization in soil and promotes Brassica chinensis growth[J]. J Hazard Mater, 2023, 458: 131921. |
[40] | Qi X, Xiao SQ, Chen XM, et al. Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology[J]. J Hazard Mater, 2022, 436: 129147. |
[41] | Chang JJ, Duan YJ, Dong J, et al. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: performance and the response of soil fungal community[J]. Sci Total Environ, 2019, 671: 676-684. |
[42] | Huang YT, Liu T, Liu J, et al. Exceptional anti-toxic growth of water spinach in arsenic and cadmium co-contaminated soil remediated using biochar loaded with Bacillus aryabhattai[J]. J Hazard Mater, 2024, 469: 133966. |
[43] | Xiong BJ, Zhang YC, Hou YW, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar[J]. Chemosphere, 2017, 182: 316-324. |
[44] | Zhou X, Sun YH, Wang TT, et al. Remediation potential of an immobilized microbial consortium with corn straw as a carrier in polycyclic aromatic hydrocarbons contaminated soil[J]. J Hazard Mater, 2024, 469: 134091. |
[45] | Lu JF, Liu YX, Zhang RL, et al. Biochar inoculated with Pseudomonas putida alleviates its inhibitory effect on biodegradation pathways in phenanthrene-contaminated soil[J]. J Hazard Mater, 2024, 461: 132550. |
[46] | Cui CZ, Shen JM, Zhu Y, et al. Bioremediation of phenanthrene in saline-alkali soil by biochar- immobilized moderately halophilic bacteria combined with Suaeda salsa L[J]. Sci Total Environ, 2023, 880: 163279. |
[47] | Song LC, Niu XG, Zhou B, et al. Application of biochar-immobilized Bacillus sp. KSB7 to enhance the phytoremediation of PAHs and heavy metals in a coking plant[J]. Chemosphere, 2022, 307(Pt 4): 136084. |
[48] | Wang CH, Gu LF, Ge SM, et al. Remediation potential of immobilized bacterial consortium with biochar as carrier in Pyrene-Cr(VI)co-contaminated soil[J]. Environ Technol, 2019, 40(18): 2345-2353. |
[49] | Qi X, Zhu MH, Yuan YB, et al. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar[J]. J Hazard Mater, 2023, 460: 132408. |
[50] | Takagi K. Study on the biodegradation of persistent organic pollutants(POPs)[J]. J Pestic Sci, 2020, 45(2): 119-123. |
[51] | Bargaz A, Elhaissoufi W, Khourchi S, et al. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus[J]. Microbiol Res, 2021, 252: 126842. |
[52] | Wang CX, Ren J, Qiao X, et al. Ammonium removal efficiency of biochar-based heterotrophic nitrifying bacteria immobilization body in water solution[J]. Environ Eng Res, 2021, 26(1): 190451. |
[53] | Shao Y, Zhong H, Mao X, et al. Biochar-immobilized Sphingomonas sp. and Acinetobacter sp. isolates to enhance nutrient removal: potential application in crab aquaculture[J]. Aquacult Environ Interact, 2020, 12: 251-262. |
[54] | Sun PF, Huang X, Xing YX, et al. Immobilization of Ochrobactrum sp. on biochar/clay composite particle: optimization of preparation and performance for nitrogen removal[J]. Front Microbiol, 2022, 13: 838836. |
[55] | 赏国锋, 张涵, 沈逸菲, 等. 生物炭固定化硝化菌去除水样中氨氮的研究[J]. 上海交通大学学报: 农业科学版, 2014, 32(5): 44-47. |
Shang GF, Zhang H, Shen YF, et al. Removal of ammonia nitrogen in aqueous samples by biochar immobilized nitrifying bacteria[J]. J Shanghai Jiao Tong Univ Agric Sci, 2014, 32(5): 44-47. | |
[56] | 吴梦莉, 李洁, 智燕彩, 等. 微生物固定化生物炭对水体铵态氮去除效果的研究[J]. 农业环境科学学报, 2021, 40(5): 1071-1078. |
Wu ML, Li J, Zhi YC, et al. Synthesis of microbial immobilized biochar for the removal of ammonia nitrogen from aqueous solutions[J]. J Agro Environ Sci, 2021, 40(5): 1071-1078. | |
[57] | An Q, Ran BB, Deng SM, et al. Peanut shell biochar immobilized Pseudomonas hibiscicola strain L1 to remove electroplating mixed-wastewater[J]. J Environ Chem Eng, 2023, 11(2): 109411. |
[58] | Zhang SN, Wang JH, Wang SH, et al. Effective removal of chlortetracycline and treatment of simulated sewage by Bacillus cereus LZ01 immobilized on erding medicine residues biochar[J]. Biomass Convers Biorefin, 2024, 14(2): 2281-2291. |
[59] | Sonsuphab K, Toomsan W, Supanchaiyamat N, et al. Enhanced triclocarban remediation from groundwater using Pseudomonas fluorescens strain MC46 immobilized on agro-industrial waste-derived biochar: optimization and kinetic analysis[J]. J Environ Chem Eng, 2022, 10(3): 107610. |
[60] | Zhang SN, Wang JH. Removal of chlortetracycline from water by Bacillus cereus immobilized on Chinese medicine residues biochar[J]. Environ Technol Innov, 2021, 24: 101930. |
[61] | Zhang SN, Wang JH. Removal of chlortetracycline from water by immobilized Bacillus subtilis on honeysuckle residue-derived biochar[J]. Water Air Soil Pollut, 2021, 232(6): 236. |
[62] | Xia MM, Niu QY, Qu XY, et al. Simultaneous adsorption and biodegradation of oxytetracycline in wastewater by Mycolicibacterium sp. immobilized on magnetic biochar[J]. Environ Pollut, 2023, 339: 122728. |
[63] | Zhang SD, Hou JJ, Zhang XT, et al. Biochar-assisted degradation of oxytetracycline by Achromobacter denitrificans and underlying mechanisms[J]. Bioresour Technol, 2023, 387: 129673. |
[64] | Li YY, Zhu YE, Yan XR, et al. Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar[J]. Sci Total Environ, 2023, 883: 163676. |
[65] | Chen X, Lin H, Dong YB, et al. Mechanisms underlying enhanced bioremediation of sulfamethoxazole and zinc(II)by Bacillus sp. SDB4 immobilized on biochar[J]. J Clean Prod, 2022, 370: 133483. |
[66] | Nguyen AH, Youn S, Yang YY, et al. Alkaline-modified biochar and nitrifying microbiome synergistically mitigate the toxicity of oxytetracycline and its toxic by-products[J]. Chem Eng J, 2024, 481: 148527. |
[67] | Liang EL, Xu L, Su JF, et al. Nano iron tetroxide-modified rice husk biochar promoted Feammox performance of Klebsiella sp. FC61 and synergistically removed Ni2+ and ciprofloxacin[J]. Bioresour Technol, 2023, 382: 129183. |
[68] | Hargreaves JA. Nitrogen biogeochemistry of aquaculture ponds[J]. Aquaculture, 1998, 166(3/4): 181-212. |
[69] | 洪枫, 吴春香. 亚硝酸盐在小棚虾养殖中的危害与防治[J]. 科学养鱼, 2024(3): 60-61. |
Hong F, Wu CX. Harm and control of nitrite in shrimp culture in small shed[J]. Sci Fish Farming, 2024(3): 60-61. | |
[70] | Cheng ZW, Chen JM, Chen DZ, et al. Biodegradation of methyl Tert-butyl ether in a bioreactor using immobilized Methylibium petroleiphilumPM1 cells[J]. Water Air Soil Pollut, 2011, 214(1): 59-72. |
[71] | 郑惠东. 水环境中抗生素来源及对健康的影响[J]. 环境卫生学杂志, 2018, 8(1): 73-77. |
Zheng HD. The source of antibiotics in aquatic environment and its impact on human health[J]. J Environ Hyg, 2018, 8(1): 73-77. | |
[72] |
Wani AK, Akhtar N, Sher F, et al. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems[J]. Arch Microbiol, 2022, 204(2): 144.
doi: 10.1007/s00203-022-02757-5 pmid: 35044532 |
[73] | Oni BA, Oziegbe O, Olawole OO. Significance of biochar application to the environment and economy[J]. Ann Agric Sci, 2019, 64(2): 222-236. |
[74] | Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491): 181-189. |
[75] | Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. |
[76] |
Quince C, Walker AW, Simpson JT, et al. Shotgun metagenomics, from sampling to analysis[J]. Nat Biotechnol, 2017, 35(9): 833-844.
doi: 10.1038/nbt.3935 pmid: 28898207 |
[1] | ZHANG Ya-han, ZHU Li-xia, HU Jing, ZHU Ya-jing, ZHANG Xue-jing, CAO Ye-zhong. Opportunities and Challenges of Glyphosate in the Application of Biotechnology Breeding in China [J]. Biotechnology Bulletin, 2022, 38(11): 1-9. |
[2] | ZHU Yong-an, WANG Miao, CAO Jing, YU He, CAO Zhen, JIN Mao-jun, WANG Jing, SHE Yong-xin. Research Progress in the Immobilization of Key Enzymes for Pesticides Residue Detection [J]. Biotechnology Bulletin, 2022, 38(1): 258-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||