Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 53-61.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0787
Previous Articles Next Articles
ZHANG Jie-ping1(), GUAN Yue-feng1,2()
Received:
2024-08-16
Online:
2024-10-26
Published:
2024-11-20
Contact:
GUAN Yue-feng
E-mail:jpzhang202203@163.com;guan@gzhu.edu.cn
ZHANG Jie-ping, GUAN Yue-feng. Crop Breeding Based on Promoter Editing[J]. Biotechnology Bulletin, 2024, 40(10): 53-61.
作物 Crop | 靶向基因 Target gene(s) | 靶向区域确定 Determination of targeting region | 植株表型 Plant phenotype | 参考文献 Reference | |
---|---|---|---|---|---|
水稻 | Oryza sativa | IPA1 | 随机敲除 | 分蘖数平均增加50%,单株产量翻倍 | [ |
水稻 | O. sativa | D18 | 机器学习 | 株高与产量的连续变异性状 | [ |
水稻 | O. sativa | GS3 | 机器学习 | 百粒重的连续变异性状 | [ |
玉米 | Zea mays | CLE | 组学信息 | 穗行数与行粒数的连续变异性状 | [ |
番茄 | Lycopersicon esculentum Miller | CLV3 | 随机敲除 | 果实大小连续变异性状 | [ |
番茄 | L. esculentum Miller | KLUH | 自然变异区、顺式作用元件 | 果实重量增加6.3%-15.7% | [ |
水稻 | O. sativa | Wx | 自然变异区 | 直链淀粉含量下降7.09%-11.50% | [ |
水稻 | O. sativa | GS3 | 机器学习 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降10.66%-14.85% | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | SLG7 | 网站预测顺式作用元件 | 垩白粒率4.5%-10.0% | [ |
水稻 | O. sativa | NAS2 | 网站预测顺式作用元件 | 锌含量增加0%-50% | [ |
番茄 | L. esculentum Miller | ANT1 | 启动子替换 | 花青素含量增加,果实为紫色 | [ |
水稻 | O. sativa | Xa13 | 细菌光诱导元件 | 白叶枯病变面积减少90%,育性不变 | [ |
水稻 | O. sativa | SWEET11/13/14 | EBE | 白叶枯病变长度可减少94% | [ |
水稻 | O. sativa | SWEET14 | EBE | 白叶枯病变长度可减少90% | [ |
水稻 | O. sativa | SULTR3;6 | EBE | 细菌性条斑病长度可减少93% | [ |
水稻 | O. sativa | CP12 | 启动子替换 | 除草剂抗性 | [ |
葡萄柚 | Citrus paradisi | LOB1 | EBE | 抗溃疡病菌 | [ |
万金橙 | Citrus sinensis Osbeck | LOB1 | EBE | 溃疡病变面积可减少90% | [ |
小麦 | Triticum aestivum | ARGOS8 | 启动子替换 | 干旱条件下每亩增产136.08 kg | [ |
小麦 | T. aestivum | VRN-A1 | 自然变异区、顺式作用元件 | 抽穗期缩短了2-3 d | [ |
Table 1 Examples of crop promoter editing
作物 Crop | 靶向基因 Target gene(s) | 靶向区域确定 Determination of targeting region | 植株表型 Plant phenotype | 参考文献 Reference | |
---|---|---|---|---|---|
水稻 | Oryza sativa | IPA1 | 随机敲除 | 分蘖数平均增加50%,单株产量翻倍 | [ |
水稻 | O. sativa | D18 | 机器学习 | 株高与产量的连续变异性状 | [ |
水稻 | O. sativa | GS3 | 机器学习 | 百粒重的连续变异性状 | [ |
玉米 | Zea mays | CLE | 组学信息 | 穗行数与行粒数的连续变异性状 | [ |
番茄 | Lycopersicon esculentum Miller | CLV3 | 随机敲除 | 果实大小连续变异性状 | [ |
番茄 | L. esculentum Miller | KLUH | 自然变异区、顺式作用元件 | 果实重量增加6.3%-15.7% | [ |
水稻 | O. sativa | Wx | 自然变异区 | 直链淀粉含量下降7.09%-11.50% | [ |
水稻 | O. sativa | GS3 | 机器学习 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降10.66%-14.85% | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | SLG7 | 网站预测顺式作用元件 | 垩白粒率4.5%-10.0% | [ |
水稻 | O. sativa | NAS2 | 网站预测顺式作用元件 | 锌含量增加0%-50% | [ |
番茄 | L. esculentum Miller | ANT1 | 启动子替换 | 花青素含量增加,果实为紫色 | [ |
水稻 | O. sativa | Xa13 | 细菌光诱导元件 | 白叶枯病变面积减少90%,育性不变 | [ |
水稻 | O. sativa | SWEET11/13/14 | EBE | 白叶枯病变长度可减少94% | [ |
水稻 | O. sativa | SWEET14 | EBE | 白叶枯病变长度可减少90% | [ |
水稻 | O. sativa | SULTR3;6 | EBE | 细菌性条斑病长度可减少93% | [ |
水稻 | O. sativa | CP12 | 启动子替换 | 除草剂抗性 | [ |
葡萄柚 | Citrus paradisi | LOB1 | EBE | 抗溃疡病菌 | [ |
万金橙 | Citrus sinensis Osbeck | LOB1 | EBE | 溃疡病变面积可减少90% | [ |
小麦 | Triticum aestivum | ARGOS8 | 启动子替换 | 干旱条件下每亩增产136.08 kg | [ |
小麦 | T. aestivum | VRN-A1 | 自然变异区、顺式作用元件 | 抽穗期缩短了2-3 d | [ |
[1] | Hua L, Wang D, Tan LB, et al. LABA1 a domestication gene associated with long, barbed awns in wild rice[J]. Plant Cell, 2015, 27(7): 1875-1888. |
[2] |
Zhu ZF, Tan LB, Fu YC, et al. Genetic control of inflorescence architecture during rice domestication[J]. Nat Commun, 2013, 4: 2200.
doi: 10.1038/ncomms3200 pmid: 23884108 |
[3] | Zhou Y, Lu DF, Li CY, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1[J]. Plant Cell, 2012, 24(3): 1034-1048. |
[4] |
Tian ZX, Wang XB, Lee RA, et al. Artificial selection for determinate growth habit in soybean[J]. Proc Natl Acad Sci USA, 2010, 107(19): 8563-8568.
doi: 10.1073/pnas.1000088107 pmid: 20421496 |
[5] |
Dong Y, Yang X, Liu J, et al. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean[J]. Nat Commun, 2014, 5: 3352.
doi: 10.1038/ncomms4352 pmid: 24549030 |
[6] |
Chakrabarti M, Zhang N, Sauvage C, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato[J]. Proc Natl Acad Sci USA, 2013, 110(42): 17125-17130.
doi: 10.1073/pnas.1307313110 pmid: 24082112 |
[7] |
Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nat Genet, 2010, 42(6): 545-549.
doi: 10.1038/ng.592 pmid: 20495564 |
[8] |
Liang QJ, Chen LY, Yang X, et al. Natural variation of Dt2 determines branching in soybean[J]. Nat Commun, 2022, 13(1): 6429.
doi: 10.1038/s41467-022-34153-4 pmid: 36307423 |
[9] | Yang YH, Xu CD, Shen ZY, et al. Crop quality improvement through genome editing strategy[J]. Front Genome Ed, 2022, 3: 819687. |
[10] | Li CX, Liu CL, Qi XT, et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize[J]. Plant Biotechnol J, 2017, 15(12): 1566-1576. |
[11] | Zhong XB, Wang J, Shi XL, et al. Genetically optimizing soybean nodulation improves yield and protein content[J]. Nat Plants, 2024, 10(5): 736-742. |
[12] | Lin WX, Bai MY, Peng CY, et al. Genome editing toward biofortified soybean with minimal trade-off between low phytic acid and yield[J]. aBIOTECH, 2024, 5(2): 196-201. |
[13] |
Gao CX. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
doi: 10.1016/j.cell.2021.01.005 pmid: 33581057 |
[14] |
Xing SN, Chen KL, Zhu HC, et al. Fine-tuning sugar content in strawberry[J]. Genome Biol, 2020, 21(1): 230.
doi: 10.1186/s13059-020-02146-5 pmid: 32883370 |
[15] | Crick F. Central dogma of molecular biology[J]. Nature, 1970, 227: 561-563. |
[16] |
Zhou XK, Zhu T, Fang W, et al. Systematic annotation of conservation states provides insights into regulatory regions in rice[J]. J Genet Genomics, 2022, 49(12): 1127-1137.
doi: 10.1016/j.jgg.2022.04.003 pmid: 35470092 |
[17] |
Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nat Rev Genet, 2020, 21(2): 71-87.
doi: 10.1038/s41576-019-0173-8 pmid: 31605096 |
[18] |
Yang C, Luo M, Zhuang XH, et al. Transcriptional and epigenetic regulation of autophagy in plants[J]. Trends Genet, 2020, 36(9): 676-688.
doi: S0168-9525(20)30159-1 pmid: 32674948 |
[19] | Zheng XM, Chen J, Pang HB, et al. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication[J]. Sci Adv, 2019, 5(12): eaax3619. |
[20] | Lin XL, Xu YX, Wang DZ, et al. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses[J]. Mol Plant, 2024, 17(3): 438-459. |
[21] | Zhang ZH, Zhang X, Lin ZL, et al. A large transposon insertion in the stiff1 promoter increases stalk strength in maize[J]. Plant Cell, 2020, 32(1): 152-165. |
[22] |
Swinnen G, Goossens A, Pauwels L. Lessons from domestication: targeting cis-regulatory elements for crop improvement[J]. Trends Plant Sci, 2016, 21(6): 506-515.
doi: S1360-1385(16)00029-7 pmid: 26876195 |
[23] | Hochheimer A, Tjian R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression[J]. Genes Dev, 2003, 17(11): 1309-1320. |
[24] | Amack SC, Antunes MS. CaMV35S promoter-A plant biology and biotechnology workhorse in the era of synthetic biology[J]. Curr Plant Biol, 2020, 24: 100179. |
[25] | Tsuda K, Suzuki T, Mimura M, et al. Comparison of constitutive promoter activities and development of maize ubiquitin promoter- and Gateway-based binary vectors for rice[J]. Plant Biotechnol, 2022, 39(2): 139-146. |
[26] | Wilkinson MJ, Twyman RM. Control of gene expression: regulation of transcription[M]// Encyclopedia of Applied Plant Sciences. Amsterdam: Elsevier, 2017: 138-146. |
[27] | Shi YN, Li Y, Guo YC, et al. A rapid pipeline for pollen- and anther-specific gene discovery based on transcriptome profiling analysis of maize tissues[J]. Int J Mol Sci, 2021, 22(13): 6877. |
[28] |
Koehorst-van Putten HJJ, Wolters AM A, Pereira-Bertram IM, et al. Cloning and characterization of a tuberous root-specific promoter from cassava(Manihot esculenta Crantz)[J]. Planta, 2012, 236(6): 1955-1965.
doi: 10.1007/s00425-012-1796-6 pmid: 23132522 |
[29] |
Jeong JS, Kim YS, Baek KH, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol, 2010, 153(1): 185-197.
doi: 10.1104/pp.110.154773 pmid: 20335401 |
[30] |
Roy S, Choudhury SR, Singh SK, et al. Functional analysis of light-regulated promoter region of AtPolλ gene[J]. Planta, 2012, 235(2): 411-432.
doi: 10.1007/s00425-011-1517-6 pmid: 21947619 |
[31] | Lee SC, Kim SH, Kim SR. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D[J]. J Plant Biol, 2013, 56(2): 115-121. |
[32] |
Walcher CL, Nemhauser JL. Bipartite promoter element required for auxin response[J]. Plant Physiol, 2012, 158(1): 273-282.
doi: 10.1104/pp.111.187559 pmid: 22100645 |
[33] | Juven-Gershon T, Hsu JY, Kadonaga JT. Perspectives on the RNA polymerase II core promoter[J]. Biochem Soc Trans, 2006, 34(Pt 6): 1047-1050. |
[34] | Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Sci, 2014, 217/218: 109-119. |
[35] | Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1): 325-327. |
[36] |
Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements(PLACE)database: 1999[J]. Nucleic Acids Res, 1999, 27(1): 297-300.
doi: 10.1093/nar/27.1.297 pmid: 9847208 |
[37] |
Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles[J]. Nucleic Acids Res, 2003, 31(1): 374-378.
doi: 10.1093/nar/gkg108 pmid: 12520026 |
[38] |
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat Biotechnol, 2020, 38(7): 824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269 |
[39] |
Xin CC, Yin JH, Yuan SP, et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption[J]. Nat Commun, 2022, 13(1): 5623.
doi: 10.1038/s41467-022-33346-1 pmid: 36153319 |
[40] |
Song XG, Meng XB, Guo HY, et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nat Biotechnol, 2022, 40(9): 1403-1411.
doi: 10.1038/s41587-022-01281-7 pmid: 35449414 |
[41] |
Zhou JP, Liu GQ, Zhao YX, et al. An efficient CRISPR-Cas12a promoter editing system for crop improvement[J]. Nat Plants, 2023, 9(4): 588-604.
doi: 10.1038/s41477-023-01384-2 pmid: 37024659 |
[42] | Liu L, Gallagher J, Arevalo ED, et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes[J]. Nat Plants, 2021, 7(3): 287-294. |
[43] |
Rodríguez-Leal D, Lemmon ZH, Man J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480.e8.
doi: S0092-8674(17)30988-1 pmid: 28919077 |
[44] | Li Q, Feng Q, Snouffer A, et al. Increasing fruit weight by editing a cis-regulatory element in tomato KLUH promoter using CRISPR/Cas9[J]. Front Plant Sci, 2022, 13: 879642. |
[45] | Tang WJ, Chen HY, Zhang SB, et al. A novel allele in the promoter of Wx decreases gene expression and confers lower apparent amylose contents in Japonica rice(Oryza sativa L.)[J]. Plants(Basel), 2024, 13(5): 745. |
[46] | Huang LC, Li QF, Zhang CQ, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnol J, 2020, 18(11): 2164-2166. |
[47] | Zeng DC, Liu TL, Ma XL, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5' UTR-intron editing improves grain quality in rice[J]. Plant Biotechnol J, 2020, 18(12): 2385-2387. |
[48] | Tan WC, Miao J, Xu B, et al. Rapid production of novel beneficial alleles for improving rice appearance quality by targeting a regulatory element of SLG7[J]. Plant Biotechnol J, 2023, 21(7): 1305-1307. |
[49] | Ludwig Y, Dueñas C Jr, Arcillas E, et al. CRISPR-mediated promoter editing of a cis-regulatory element of OsNAS2 increases Zn uptake/translocation and plant yield in rice[J]. Front Genome Ed, 2024, 5: 1308228. |
[50] |
Čermák T, Baltes NJ, Čegan R, et al. High-frequency, precise modification of the tomato genome[J]. Genome Biol, 2015, 16: 232.
doi: 10.1186/s13059-015-0796-9 pmid: 26541286 |
[51] | Li CY, Zhou L, Wu B, et al. Improvement of bacterial blight resistance in two conventionally cultivated rice varieties by editing the noncoding region[J]. Cells, 2022, 11(16): 2535. |
[52] |
Oliva R, Ji CH, Atienza-Grande G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nat Biotechnol, 2019, 37(11): 1344-1350.
doi: 10.1038/s41587-019-0267-z pmid: 31659337 |
[53] | Duy PN, Lan DT, Pham Thu H, et al. Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter[J]. PLoS One, 2021, 16(9): e0255470. |
[54] |
Xu XM, Xu ZY, Li ZY, et al. Increasing resistance to bacterial leaf streak in rice by editing the promoter of susceptibility gene OsSULRT3;6[J]. Plant Biotechnol J, 2021, 19(6): 1101-1103.
doi: 10.1111/pbi.13602 pmid: 33942463 |
[55] |
Lu Y, Wang JY, Chen B, et al. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice[J]. Nat Plants, 2021, 7(11): 1445-1452.
doi: 10.1038/s41477-021-01019-4 pmid: 34782773 |
[56] | Jia HG, Omar AA, Orbović V, et al. Biallelic editing of the LOB1 promoter via CRISPR/Cas9 creates canker-resistant ‘Duncan’ grapefruit[J]. Phytopathology, 2022, 112(2): 308-314. |
[57] | Peng AH, Chen SC, Lei TG, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in Citrus[J]. Plant Biotechnol J, 2017, 15(12): 1509-1519. |
[58] |
Shi JR, Gao HR, Wang HY, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnol J, 2017, 15(2): 207-216.
doi: 10.1111/pbi.12603 pmid: 27442592 |
[59] | Miroshnichenko D, Timerbaev V, Klementyeva A, et al. CRISPR/Cas9-induced modification of the conservative promoter region of VRN-A1 alters the heading time of hexaploid bread wheat[J]. Front Plant Sci, 2022, 13: 1048695. |
[60] | Ray DK, Mueller ND, West PC, et al. Yield trends are insufficient to double global crop production by 2050[J]. PLoS One, 2013, 8(6): e66428. |
[61] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proc Natl Acad Sci USA, 2011, 108(50): 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295 |
[62] | Khush GS. Breaking the yield frontier of rice[J]. GeoJournal, 1995, 35(3): 329-332. |
[63] |
Jiao YQ, Wang YH, Xue DW, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544.
doi: 10.1038/ng.591 pmid: 20495565 |
[64] | Chu YH, Jang JC, Huang ZJ, et al. Tomato locule number and fruit size controlled by natural alleles of lc and fas[J]. Plant Direct, 2019, 3(7): e00142. |
[65] | Ramesh M, Zakiuddin Ali S, Bhattacharya KR. Structure of rice starch and its relation to cooked-rice texture[J]. Carbohydr Polym, 1999, 38(4): 337-347. |
[66] | Nawaz M, Sun JF, Shabbir S, et al. A review of plants strategies to resist biotic and abiotic environmental stressors[J]. Sci Total Environ, 2023, 900: 165832. |
[67] | Yuan M, Chu ZH, Li XH, et al. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution[J]. Plant Cell, 2010, 22(9): 3164-3176. |
[68] |
Li CY, Li W, Zhou ZH, et al. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice[J]. Plant Biotechnol J, 2020, 18(2): 313-315.
doi: 10.1111/pbi.13217 pmid: 31344313 |
[69] |
Hickey LT, Hafeez AN, Robinson H, et al. Breeding crops to feed 10 billion[J]. Nat Biotechnol, 2019, 37(7): 744-754.
doi: 10.1038/s41587-019-0152-9 pmid: 31209375 |
[70] |
Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form[J]. Plant Cell, 1998, 10(7): 1075-1082.
doi: 10.1105/tpc.10.7.1075 pmid: 9668128 |
[71] | Brkljacic J, Grotewold E. Combinatorial control of plant gene expression[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 31-40. |
[72] |
Yuste-Lisbona FJ, Fernández-Lozano A, Pineda B, et al. ENO regulates tomato fruit size through the floral meristem development network[J]. Proc Natl Acad Sci USA, 2020, 117(14): 8187-8195.
doi: 10.1073/pnas.1913688117 pmid: 32179669 |
[73] |
Zhao HN, Zhang WL, Chen LF, et al. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome[J]. Plant Physiol, 2018, 176(4): 2789-2803.
doi: 10.1104/pp.17.01467 pmid: 29463772 |
[74] |
Hellman LM, Fried MG. Electrophoretic mobility shift assay(EMSA)for detecting protein-nucleic acid interactions[J]. Nat Protoc, 2007, 2(8): 1849-1861.
doi: 10.1038/nprot.2007.249 pmid: 17703195 |
[75] | Xie L, Liu MH, Zhao L, et al. RiceENCODE: a comprehensive epigenomic database as a rice Encyclopedia of DNA Elements[J]. Mol Plant, 2021, 14(10): 1604-1606. |
[76] | Fu LY, Zhu T, Zhou XK, et al. ChIP-Hub provides an integrative platform for exploring plant regulome[J]. Nat Commun, 2022, 13(1): 3413. |
[77] | Zhao H, Tu Z, Liu YM, et al. PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants[J]. Nucleic Acids Res, 2021, 49(W1): W523-W529. |
[78] |
Baek M, McHugh R, Anishchenko I, et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA[J]. Nat Methods, 2024, 21(1): 117-121.
doi: 10.1038/s41592-023-02086-5 pmid: 37996753 |
[79] |
Liang YM, Liu HJ, Yan JB, et al. Natural variation in crops: realized understanding, continuing promise[J]. Annu Rev Plant Biol, 2021, 72: 357-385.
doi: 10.1146/annurev-arplant-080720-090632 pmid: 33481630 |
[80] |
Washburn JD, Mejia-Guerra MK, Ramstein G, et al. Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence[J]. Proc Natl Acad Sci USA, 2019, 116(12): 5542-5549.
doi: 10.1073/pnas.1814551116 pmid: 30842277 |
[81] | Peleke FF, Zumkeller SM, Gültas M, et al. Deep learning the cis-regulatory code for gene expression in selected model plants[J]. Nat Commun, 2024, 15(1): 3488. |
[82] | Deng KX, Zhang QZ, Hong YX, et al. iCREPCP: a deep learning-based web server for identifying base-resolution cis-regulatory elements within plant core promoters[J]. Plant Commun, 2023, 4(1): 100455. |
[83] | Wang YF, Zhang PX, Guo WJ, et al. A deep learning approach to Automate whole-genome prediction of diverse epigenomic modifications in plants[J]. New Phytol, 2021, 232(2): 880-897. |
[84] | Chen YQ, Gao YJ, Zhou HJ, et al. AthEDL: Identifying enhancers in Arabidopsis thaliana using anattention-based deep learning method[J]. Curr Bioinform, 2022, 17(6): 531-540. |
[85] |
Zhang N, McHale LK, Finer JJ. Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters[J]. Plant Biotechnol J, 2019, 17(4): 724-735.
doi: 10.1111/pbi.13010 pmid: 30191675 |
[1] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[2] | LI Shu-lei, ZHENG Hong-yan, WANG Lei. Application and Prospect of Gene Editing Technology in Crop Breeding [J]. Biotechnology Bulletin, 2020, 36(11): 209-221. |
[3] | Huang Dafang. GM Crop Breeding : Current Status and Prospects [J]. Biotechnology Bulletin, 2015, 31(4): 3-6. |
[4] | Li Zhuoxue, Chen Xinbo. Research Advances on Plant Inducible Promoters and Related Cis-acting Elements [J]. Biotechnology Bulletin, 2015, 31(10): 8-15. |
[5] | Wang Jing, Li Bing, Liu Cuicui, Zhu Zhen, Zhang Jiyu. Advances of the Studies on Structure and Function of Promoter [J]. Biotechnology Bulletin, 2014, 30(8): 40-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||