Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (7): 60-68.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0947
Previous Articles Next Articles
WANG Yu-tong1,2,3(
), ZHANG Ying-hui1,2, XU Mei4, YAN Xu4(
), ZHAO Fei-yi1,2(
), TIAN Dan5
Received:2024-09-28
Online:2025-07-26
Published:2025-07-22
Contact:
YAN Xu, ZHAO Fei-yi
E-mail:yt_wang2023@163.com;yanxu@usx.edu.cn;tspaulzhao@tsnu.edu.cn
WANG Yu-tong, ZHANG Ying-hui, XU Mei, YAN Xu, ZHAO Fei-yi, TIAN Dan. Research Progress in Adaptor Protein Complex TPC in Plants[J]. Biotechnology Bulletin, 2025, 41(7): 60-68.
Fig. 1 Schematic representation of the two multimeric adaptor complexes involved in plant CMEA: The octameric TPC (TPLATE complex) shares its inner core with the tetrameric AP-2 complex (homologous subunits have the same color). The inner core consists of two large, one medium, and one small subunit. In addition to the inner core, the outer core of TPC contains two arching subunits and two plant-specific subunits. B: The domain of subunits in TPC and AP-2. C: TPC and AP-2 are involved in clathrin-mediated endocytosis in plant. Refer to Kraus et al[4]
亚基名称 Names of subunits | 基因编号 Gene ID | 突变体表型 Mutant phenotype | 亚细胞定位 Subcellular localization | 结构域 Structural domain | 参与的运输途径 Involved in trafficking pathways | 参考文献 References |
|---|---|---|---|---|---|---|
| TPLATE | At3g01780 | 花粉致死;下调导致幼苗根尖长度变短;根尖扭曲生长;部分功能缺失突变体对CLV3小肽表现出较强的敏感性 | 质膜 | a-Solenoid, appendage, anchor, armadillo | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输;(2)参与自噬途径 | [ |
| TML | At5g57460 | 花粉致死;下调导致幼苗根尖长度变短;根尖扭曲生长 | 质膜 | μ-Homology, longin | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| TASH3 | At2g07360 | 花粉致死;SH3结构域功能缺失而获得nosh突变体,该突变并不能阻止TPC的形成,却严重损害了胞吞作用以及植物生长发育 | 质膜 | α-Solenoid, SH3, armadillo | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| TWD40-1 | At3g50590 | 花粉致死 | 质膜 | β-Propeller, a-solenoid, WD40 | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| TWD40-2 | At5g24710 | 花粉致死;基因下调突变体表现更短的下胚轴表型;活性弱等位基因突变体 | 质膜 | β-Propeller, a-solenoid, WD40 | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| AtEH1/Pan1 | At1g20760 | 花粉致死 | 质膜;自噬体 | EH, coiled coil | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输;(2)参与肌动蛋白介导的自噬途径;(3)参与液-液相分离过程 | [ |
| AtEH2/Pan1 | At1g21630 | 花粉致死 | 质膜;自噬体 | EH, coiled coil | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输;(2)参与肌动蛋白介导的自噬途径;(3)参与液-液相分离过程 | [ |
| LOLITA | At1g15370 | 花粉致死 | 质膜 | Longin | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
Table 1 Biological function of adaptor protein complex TPC in Arabidopsis
亚基名称 Names of subunits | 基因编号 Gene ID | 突变体表型 Mutant phenotype | 亚细胞定位 Subcellular localization | 结构域 Structural domain | 参与的运输途径 Involved in trafficking pathways | 参考文献 References |
|---|---|---|---|---|---|---|
| TPLATE | At3g01780 | 花粉致死;下调导致幼苗根尖长度变短;根尖扭曲生长;部分功能缺失突变体对CLV3小肽表现出较强的敏感性 | 质膜 | a-Solenoid, appendage, anchor, armadillo | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输;(2)参与自噬途径 | [ |
| TML | At5g57460 | 花粉致死;下调导致幼苗根尖长度变短;根尖扭曲生长 | 质膜 | μ-Homology, longin | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| TASH3 | At2g07360 | 花粉致死;SH3结构域功能缺失而获得nosh突变体,该突变并不能阻止TPC的形成,却严重损害了胞吞作用以及植物生长发育 | 质膜 | α-Solenoid, SH3, armadillo | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| TWD40-1 | At3g50590 | 花粉致死 | 质膜 | β-Propeller, a-solenoid, WD40 | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| TWD40-2 | At5g24710 | 花粉致死;基因下调突变体表现更短的下胚轴表型;活性弱等位基因突变体 | 质膜 | β-Propeller, a-solenoid, WD40 | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| AtEH1/Pan1 | At1g20760 | 花粉致死 | 质膜;自噬体 | EH, coiled coil | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输;(2)参与肌动蛋白介导的自噬途径;(3)参与液-液相分离过程 | [ |
| AtEH2/Pan1 | At1g21630 | 花粉致死 | 质膜;自噬体 | EH, coiled coil | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输;(2)参与肌动蛋白介导的自噬途径;(3)参与液-液相分离过程 | [ |
| LOLITA | At1g15370 | 花粉致死 | 质膜 | Longin | (1) 调控网格蛋白介导的质膜蛋白从质膜到反式高尔基体网络/早期内吞体的运输 | [ |
| [1] | 徐昌文, 钱虹萍, 罗鹏云, 等. 植物膜蛋白的囊泡转运及调控机制的研究进展 [J]. 科学通报, 2023, 68(7): 762-778. |
| Xu CW, Qian HP, Luo PY, et al. Advances in vesicle trafficking of membrane proteins and their regulatory mechanisms [J]. Chin Sci Bull, 2023, 68(7): 762-778. | |
| [2] | Aniento F, Sánchez de Medina Hernández V, Dagdas Y, et al. Molecular mechanisms of endomembrane trafficking in plants [J]. Plant Cell, 2022, 34(1): 146-173. |
| [3] | 严旭, 徐梅, 王玉同, 等. 植物胞吞和胞吐的耦合调控 [J]. 植物学报, 2022, 57(3): 375-387. |
| Yan X, Xu M, Wang YT, et al. Coupling regulation of endocytosis and exocytosis in plants [J]. Chin Bull Bot, 2022, 57(3): 375-387. | |
| [4] | Kraus M, Pleskot R, Van Damme D. Structural and evolutionary aspects of plant endocytosis [J]. Annu Rev Plant Biol, 2024, 75(1): 521-550. |
| [5] | Reynolds GD, Wang C, Pan JW, et al. Inroads into internalization: five years of endocytic exploration [J]. Plant Physiol, 2018, 176(1): 208-218. |
| [6] | Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis [J]. Nat Rev Mol Cell Biol, 2018, 19(5): 313-326. |
| [7] | Van Damme D, Bouget FY, Van Poucke K, et al. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins [J]. Plant J, 2004, 40(3): 386-398. |
| [8] | Van Damme D, Coutuer S, De Rycke R, et al. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins [J]. Plant Cell, 2006, 18(12): 3502-3518. |
| [9] | Larson RT, Dacks JB, Barlow LD. Recent gene duplications dominate evolutionary dynamics of adaptor protein complex subunits in embryophytes [J]. Traffic, 2019, 20(12): 961-973. |
| [10] | Gadeyne A, Sánchez-Rodríguez C, Vanneste S, et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants [J]. Cell, 2014, 156(4): 691-704. |
| [11] | Yperman K, Wang J, Eeckhout D, et al. Molecular architecture of the endocytic TPLATE complex [J]. Sci Adv, 2021, 7(9): eabe7999. |
| [12] | Hirst J, Schlacht A, Norcott JP, et al. Characterization of TSET, an ancient and widespread membrane trafficking complex [J]. eLife, 2014, 3: e02866. |
| [13] | Zhang Y, Persson S, Hirst J, et al. Change your TPLATE, change your fate: plant CME and beyond [J]. Trends Plant Sci, 2015, 20(1): 41-48. |
| [14] | Yperman K, Papageorgiou AC, Merceron R, et al. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding [J]. Nat Commun, 2021, 12(1): 3050. |
| [15] | Wang J, Yperman K, Grones P, et al. Conditional destabilization of the TPLATE complex impairs endocytic internalization [J]. Proc Natl Acad Sci USA, 2021, 118(15): e2023456118. |
| [16] | Grones P, De Meyer A, Pleskot R, et al. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo [J]. Nat Plants, 2022, 8(12): 1467-1483. |
| [17] | Wang J, Jiang QH, Pleskot R, et al. TPLATE complex-dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance [J]. EMBO Rep, 2023, 24(9): e54709. |
| [18] | Bashline L, Li SD, Zhu XY, et al. The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis [J]. Proc Natl Acad Sci USA, 2015, 112(41): 12870-12875. |
| [19] | Dragwidge JM, Wang YN, Brocard L, et al. Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants [J]. Nat Cell Biol, 2024, 26(3): 438-449. |
| [20] | Wang PW, Pleskot R, Zang JZ, et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery [J]. Nat Commun, 2019, 10(1): 5132. |
| [21] | Winkler J, De Meyer A, Mylle E, et al. Nanobody-dependent delocalization of endocytic machinery in Arabidopsis root cells dampens their internalization capacity [J]. Front Plant Sci, 2021, 12: 538580. |
| [22] | Wang J, Mylle E, Johnson A, et al. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits [J]. Plant Physiol, 2020, 183(3): 986-997. |
| [23] | Platre MP, Noack LC, Doumane M, et al. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes [J]. Dev Cell, 2018, 45(4): 465-480.e11. |
| [24] | Sánchez-Rodríguez C, Shi YY, Kesten C, et al. The cellulose synthases are cargo of the TPLATE adaptor complex [J]. Mol Plant, 2018, 11(2): 346-349. |
| [25] | 曹梦醒, 王昊, 韩晓, 等. TPLATE复合体亚基TML调控拟南芥花粉发育的研究 [J]. 中国细胞生物学学报, 2018, 40(10): 1670-1676. |
| Cao MX, Wang H, Han X, et al. TML, one subunit of TPLATE complex, regulates pollen development in Arabidopsis [J]. Chin J Cell Biol, 2018, 40(10): 1670-1676. | |
| [26] | Russo G, Carotenuto G, Fiorilli V, et al. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi [J]. New Phytol, 2019, 221(2): 1036-1048. |
| [27] | Van Damme D, Gadeyne A, Vanstraelen M, et al. Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways [J]. Proc Natl Acad Sci USA, 2011, 108(2): 615-620. |
| [28] | Dragwidge JM, VAN Damme D. Visualising endocytosis in plants: past, present, and future [J]. J Microsc, 2020, 280(2): 104-110. |
| [29] | Sigismund S, Lanzetti L, Scita G, et al. Endocytosis in the context-dependent regulation of individual and collective cell properties [J]. Nat Rev Mol Cell Biol, 2021, 22(9): 625-643. |
| [30] | Bar M, Aharon M, Benjamin S, et al. AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis [J]. Plant J, 2008, 55(6): 1025-1038. |
| [31] | Bar M, Sharfman M, Schuster S, et al. The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling [J]. PLoS One, 2009, 4(11): e7973. |
| [32] | Dahhan DA, Reynolds GD, Cárdenas JJ, et al. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components [J]. Plant Cell, 2022, 34(6): 2150-2173. |
| [33] | Johnson A, Dahhan DA, Gnyliukh N, et al. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis [J]. Proc Natl Acad Sci USA, 2021, 118(51): e2113046118. |
| [34] | Henry GD, Corrigan DJ, Dineen JV, et al. Charge effects in the selection of NPF motifs by the EH domain of EHD1 [J]. Biochemistry, 2010, 49(16): 3381-3392. |
| [35] | Wang C, Hu TW, Yan X, et al. Differential regulation of clathrin and its adaptor proteins during membrane recruitment for endocytosis [J]. Plant Physiol, 2016, 171(1): 215-229. |
| [36] | Lamark T, Johansen T. Mechanisms of selective autophagy [J]. Annu Rev Cell Dev Biol, 2021, 37: 143-169. |
| [37] | Tang J, Bassham DC. Autophagy during drought: function, regulation, and potential application [J]. Plant J, 2022, 109(2): 390-401. |
| [38] | Wang PW, Hawes C, Hussey PJ. Plant endoplasmic reticulum-plasma membrane contact sites [J]. Trends Plant Sci, 2017, 22(4): 289-297. |
| [39] | 张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展 [J]. 生物技术通报, 2023, 39(11): 44-53. |
| Zhang HH, Fang XF. Advances in the regulation of stress sensing and responses by phase separation in plants [J]. Biotechnol Bull, 2023, 39(11): 44-53. | |
| [40] | Donaldson JG. Phospholipase D in endocytosis and endosomal recycling pathways [J]. Biochim Biophys Acta, 2009, 1791(9): 845-849. |
| [41] | Ory S, Ceridono M, Momboisse F, et al. Phospholipid scramblase-1-induced lipid reorganization regulates compensatory endocytosis in neuroendocrine cells [J]. J Neurosci, 2013, 33(8): 3545-3556. |
| [42] | 何世明, 王实, 吝易. 生物大分子相分离领域的研究进展回顾与展望 [J]. 科学通报, 2024, 69(30): 4486-4499. |
| He SM, Wang S, Lin Y. Biomolecular phase separation research: milestones, insights, and future trajectories [J]. Chin Sci Bull, 2024, 69(30): 4486-4499. | |
| [43] | Day KJ, Kago G, Wang LP, et al. Liquid-like protein interactions catalyse assembly of endocytic vesicles [J]. Nat Cell Biol, 2021, 23(4): 366-376. |
| [44] | Kozak M, Kaksonen M. Condensation of Ede1 promotes the initiation of endocytosis [J]. eLife, 2022, 11: e72865. |
| [45] | Fan LS, Li RL, Pan JW, et al. Endocytosis and its regulation in plants [J]. Trends Plant Sci, 2015, 20(6): 388-397. |
| [46] | Dahhan DA, Bednarek SY. Advances in structural, spatial, and temporal mechanics of plant endocytosis [J]. FEBS Lett, 2022, 596(17): 2269-2287. |
| [47] | Thompson B, Petrić Howe N. Alphafold 3.0: the AI protein predictor gets an upgrade [J]. Nature, 2024. DOI: 10.1038/d41586-024-01385-x . |
| [48] | Nomburg J, Doherty EE, Price N, et al. Birth of protein folds and functions in the virome [J]. Nature, 2024, 633(8030): 710-717. |
| [1] | GU Pan, QI Xue-ying, LI Li, ZHANG Xi, SHAN Xiao-yi. Endocytosis of AtRGS1 Involved in the Regulation of G-protein-mediated Arabidopsis Development and Stress Responses [J]. Biotechnology Bulletin, 2022, 38(6): 34-42. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||