[1] Dakora FD. Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes[J].
New Phytologist, 2003, 158(1):39-49.
[2] Hunter WJ, Kuykendall LD, Manter DK. Rhizobium selenireducens sp. nov. :a selenite-reducing α-Proteobacteria isolated from a bioreactor[J]. Curr Microbiol, 2007, 55 :455-460.
[3] Zhang GX, Ren SZ, Xu MY, et al. Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge[J]. Int J Syst Evol Microbiol, 2011, 61 :816-822.
[4] Colwell RR. Polyphasic taxonomy of the genus Vibrio :numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species[J]. J Bacteriol, 1970, 104 :410-433.
[5] Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy, a consensus approach to bacterial systematics[J]. Microbiol Rev, 1996, 60 :407-438.
[6] Graham PH, Sadowsky MJ, Keyser HH, et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria[J]. Int J Syst Bacteriol, 1991, 41 :582- 587.
[7] Vincent JM. A manual for the practical study of root-nodule bacteria [M]//. International Biological Programme Handbook no.15.
Oxford :Blackwell Scientific Publications Ltd, 1970 :73-97.
[8] Chen WX, Yan GH, Li JL. Numerical taxonomic study of fastgrowing soybean rhizobia and proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov[J]. Int J Syst Bacteriol, 1988, 38 :392-397.
[9] Gao JL, Sun JG, Li Y, et al. Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province[J]. China Int J Syst Bacteriol, 1994, 44 :151-158.
[10] Haukka K, Lindstr?m K, Young JPW. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America[J].
Appl Environ, Microbiol, 1998, 64 :419-426.
[11] Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173 :697-703.
[12] Kwon SW, Park JY, Kim JS, et al. Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences[J]. Int J Syst Evol Microbiol, 2005, 55 :263-270.
[13] Vinuesa P, Rademaker JL, de Bruijn FJ, et al. Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA(16S rDNA)and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting and partial 16S rDNA sequencing [J]. Appl Environ Microbiol, 1998, 64 :2096-2104.
[14] Ribeiro RA, Barcellos FG, Thompson FL, et al. Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean(Phaseolus vulgaris L.)reveals unexpected taxonomic diversity[J]. Res Microbiol, 2009, 160 :297-306.
[15] Martens M, Delaere M, Coopman R, et al. Multilocus sequence analysis of Ensifer and related taxa[J]. Int J Syst Evol Microbiol, 2007, 57 :489-503.
[16] Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms[J]. J Mol Biol, 1961, 3 :208-218.
[17] Johnson JL. Determination of DNA base composition, DNA reassociation and RNA hybridization of bacterial nucleicacid[J].
Methods in Microbiology, 1985, 18 :33-74 .
[18] Deley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyrhibonucleic acid[J]. J Bacteriol, 1970, 101 :737-754.
[19] Versalovic J, Schneider M, De Bruijin FJ, et al . Genomic fingerprinting of bacteria using repetitive sequence based PCR(rep-PCR) [J]. Methods in Molecular and Cellular Biology, 1994, 5 :25 -40.
[20] Young JM, Kuykendall LD, Mart1'nez-Romero E, et al. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicolade Lajudieet al. 1998 as new combinations : Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R.
vitis[J]. Int J Syst Evol Microbiol, 2001, 51 :89-103.
[21] Wayne LG, Brenner DJ, Colwell RR, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics.
Int J Syst Bacteriol, 1987, 37 :463-464.
[22] Woese CR. Bacterial evolution[J]. Microbiol Rev, 1987, 51 : 221-271.
[23] Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms :proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proc Natl Acad Sci, 1990, 87 :4576-4579.
[24] Willems A, Collins D. Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequence[J]. Int J Syst Bacteriol, 1993, 43 :305-313.
[25] Willems A. The taxonomy of rhizobia :an overview[J]. Plant Soil, 2006, 287 :3-14.
[26] Menna P, Hungria M, Barcellos FG, et al. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants[J]. Syst Appl Microbiol, 2006, 29 :315-332.
[27] Gevers D, Cohan FM, Lawrence JG, et al. Re-evaluating prokaryotic species[J]. Nat Rev Microbiol, 2005, 3 :733-739.
[28] Stackebrandt E, Goebel BM. Taxonomic note :a place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. Int J Syst Bacteriol, 1994, 44 :846-849.
[29] Sullivan JT, Eardly BD, van Berkum P, et al. Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus[J]. Appl Environ Microbiol, 1996, 62 :2818-2825.
[30] Jaspers E, Overmann J. Ecological significance of microdiversity : identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies[J]. Appl Environ Microbiol, 2004, 70 :4831-4839.
[31] Stepkowski T, Czaplinska M, Miedzinska K, et al. The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria[J] . Syst Appl Microbiol, 2003, 26 :483-494.
[32] Stackebrandt E, Frederiksen W, Garrity GM, et al. Report of the ad hoc committee for the re-Evaluation of the species definition in bacteriology [J]. Int J Syst Evol Microbiol, 2002, 52 :1043-1047.
[33] Martens M, Dawyndt P, Coopman R, et al.Advantages of multilocus sequence analysis for taxonomic studies :a case study using 10 housekeeping genes in the genus Ensifer(including former Sinorhizobium) [J]. Int J Syst Evol Microbiol, 2008, 58 :200-214.
[34] de Bruijn FJ. Use of repetitive(repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus)sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria[J]. Appl Environ Microbiol, 1992, 58 :2180-2187.
[35] Judd AK, Schneider M, Sadowsky MJ, et al. Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains[J]. Appl Environ Microbiol, 1993, 59 :1702-1708.
[36] Fleischmann R, Adams M, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae[J]. Science, 1995, 269 :496-512.
[37] Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes[J]. Proc Natl Acad Sci USA, 2005, 102 :2567-2572.
[38] vGoris J, Konstantinidis KT, Klappenbach JA, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities[J]. Int J Syst Evol Microbiol, 2007, 57 :81-91.
[39] Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition[J]. PNAS, 2009, 106(45): 19126-19131. |