[1] Hassett-Sipple B, Swartout J, Schoeny R. Mercury study report to Congress. Volume V :Health effects of mercury and mercury compounds [R]. USA :EPA-452/R-97-007, 1997. [2] Aiyer, HN, Kawazoe T, Lim J, et al. Mercury treatment of optical nearfield fibre probes for smoother tips with reduced light leakage[J]. Nanotechnology, 2001, 12 :368-371. [3] Yoon S, Miller EW, He Q, et al. A bright and specific fluorescent sensor for mercury in water, cells, and tissue[J]. Angew Chem, Int Ed, 2007, 46 :6658-6661. [4] Nolan EM, Lippard SJ. A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media[J]. J Am Chem Soc, 2003, 125 :14270-14271. [5] Yoon S, Albers AE, Wong AP, et al. Screening mercury levels in fish with a selective fluorescent chemosensor[J].J Am Chem Soc, 2005, 127 :16030-16031. [6] Yang YK, Yook KJ, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. J Am Chem Soc, 2005, 127 :16760-16761. [7] Zheng H, Qian ZH, Xu L, et al. Switching the recognition preference of rhodamine B spirolactam by replacing one atom : design of rhodamine B thiohydrazide for recognition of Hg(II)in aqueous solution[J].Org Lett, 2006, 8 :859-861. [8] Huang CC, Chang HT. Selective gold-nanoparticle-based “turnon” fluorescent sensors for detection of mercury(II)in aqueous solution[J]. Anal Chem, 2006, 78 :8332-8338. [9] Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion(Hg2+)in aqueous media using DNA-functionalized gold nanoparticles[J]. Angew Chem In Ed, 2007, 46 :4093-4096. [10] Xue XJ, Wang F, Liu XG. One-step, room temperature, colorimetric detection of mercury(Hg2+)using DNA/nanoparticle conjugates[J]. J Am Chem Soc, 2008, 130 :3244-3245. [11] Liu XF, Tang YL, Wang LH, et al. Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides[J]. Adv Mate, 2007, 19 :1471-1474. [12] Liu J, Lu Y. Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity[J]. Angew Chem Int Ed Engl, 2007, 46(40): 7587-7590. [13] Kim IB, Bunz UHF. Modulating the sensory response of a conjugated polymer by proteins : an agglutination assay for mercury ions in water[J]. J Am Chem Soc, 2006, 128(9):2818-2819. [14] Miyake Y, Togashi H, Tashiro M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes[J]. J Am Chem Soc, 2006, 128 :2172-2173. [15] Wu JK, Li LY, Zhu D, et al. Colorimetric assay for mercury (II)based on mercury-specific DNA-functionalized gold nanoparticles[J]. Anal Chim Acta, 2011, 694 :115-119. [16] Wu JK, Li LY, Shen BJ, et al. Ploythymine oligonucleotide modified gold electrode for voltammetric determination of mercury(II)in aqueous solution[J]. Electroanalysis, 2010, 22 :479-482. [17] Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II)in aqueous solutions[J]. Angew Chem Int Ed, 2004, 43 :4300-4302. [18] Wang ZD, Lee JH, Lu Y. Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA[J]. Chem Commun, 2008 :6005-6007. [19] Zipper H, Brunner H, Bernhagen J, et al. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications[J]. Nucleic Acids Research, 2004, 32:e103. |