[1] Hüser D, Gogol-D?ring A, Lutter T, et al. Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome[J]. PLoS Pathogens, 2010, 6(7):e1000985.
[2] Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus[J]. Proceedings of the National Academy of Sciences, 1990, 87(6):2211-2215.
[3] Kotin RM, Menninger JC, Ward DC, et al. Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter[J]. Genomics, 1991, 10(3):831-834.
[4] 王启钊, 吕颖慧, 李招发, 等. 腺相关病毒的衣壳装配和 DNA 衣壳化机制[J]. 生物工程学报, 2011, 27(4):531-538.
[5] Bandyopadhyay S, Cao M, Liu Y, et al. HPV E1 up-regulates replication-related biochemistries of AAV Rep78[J]. Virology, 2010, 402(1):94-101.
[6] Dong B, Nakai H, Xiao W. Characterization of genome integrity for oversized recombinant AAV vector[J]. Molecular therapy 2009, 18(1):87-92.
[7] Chou JY, Mansfield BC. Recombinant AAV-directed gene therapy for type I glycogen storage diseases[J].Expert Opinion on Biological Therapy, 2011, 11(8):1011-1024.
[8] Kawano Y, Neeley S, Adachi K, et al. An experimental and computational evolution-based method to study a mode of Co-evolution of overlapping open reading frames in the AAV2 viral genome[J]. PloS one , 2013, 8(6):e66211.
[9] Sonntag F, K?ther K, Schmidt K, et al. The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes[J]. Journal of Virology, 2011, 85(23):12686-12697.
[10] Naumer M, Sonntag F, Schmidt K, et al. Properties of the adeno-associated virus assembly-activating protein[J]. Journal of Virology, 2012, 86(23):13038-13048.
[11] Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus[J]. Proc Nat Acad Sci, 2010, 107(22):10220-10225.
[12] Backovic A, Cervelli T, Salvetti A, et al. Capsid protein expression and adeno-associated virus like particles assembly in Saccharomy-ces cerevisiae[J]. Microbial Cell Factories, 2012, 11(1):124.
[13] Nash K, Chen W, Salganik M, Muzyczka N. Identification of cellular proteins that interact with the adeno-associated virus rep protein[J]. Journal of Virology, 2009, 83(1):454-469.
[14] Surosky RT, Urabe M, Godwin SG, et al. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome[J]. Journal of Virology, 1997, 71(10):7951-7959.
[15] Im DS, Muzyczka N. The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity[J]. Cell, 1990, 61(3):447-457.
[16] Weitzman MD, Ky?sti? SR, Kotin RM, et al. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA[J]. Proceedings of the National Academy of Sciences, 1994, 91(13):5808-5812.
[17] Linden RM, Winocour E, Berns KI. The recombination signals for adeno-associated virus site-specific integration[J]. Proceedings of the National Academy of Sciences, 1996, 93(15):7966-7972.
[18] Kotin RM. Prospects for the use of adeno-associated virus as a vector for human gene therapy[J]. Human Gene Therapy, 1994, 5(7):793-801.
[19] Young SM, Samulski RJ. Adeno-associated virus (AAV) site-specific recombination does not require a Rep-dependent origin of replication within the AAV terminal repeat[J]. Proceedings of the National Academy of Sciences, 2001, 98(24):13525-13530.
[20] Giraud C, Winocour E, Berns KI. Site-specific integration by adeno-associated virus is directed by a cellular DNA sequence[J]. Proc Nat Acad Sci, 1994, 91(21):10039-10043.
[21] Snyder R, Im D, Muzyczka N. Evidence for covalent attachment of the adeno-associated virus (AAV) rep protein to the ends of the AAV genome[J]. J Virol, 1990, 64(12):6204-6213.
[22] Chiorini JA, Yang L, Safer B, et al. Determination of adeno-associated virus Rep68 and Rep78 binding sites by random sequence oligonucleotide selection[J]. J Virol, 1995, 69(11):7334-7338.
[23] Philpott NJ, Giraud-Wali C, Dupuis C, et al. Efficient integration of recombinant adeno-associated virus DNA vectors requires a p5-rep sequence in cis[J]. J Virol, 2002, 76(11):5411-5421.
[24] Hamilton H, Gomos J, Berns KI, et al. Adeno-associated virus site-specific integration and AAVS1 disruption[J]. J Virol, 2004, 78(15):7874-7882.
[25] Weindler FW, Heilbronn R. A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication[J]. J Virol, 1991, 65(5):2476-2483.
[26] Heilbronn R, Engstler M, Weger S, et al. ssDNA‐dependent colocalization of adeno-associated virus Rep and herpes simplex virus ICP8 in nuclear replication domains[J]. Nucleic Acids Research, 2003, 31(21):6206-6213.
[27] Slanina H, Weger S, Stow ND, et al. Role of the herpes simplex virus helicase-primase complex during adeno-associated virus DNA replication[J]. Journal of Virology, 2006, 80(11):5241-5250.
[28] H?rer M, Weger S, Butz K, et al. Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters[J]. J Virol, 1995, 69(9):5485-5496.
[29] Kleinschmidt JA, M?hler M, Weindler FW, Heilbronn R. Sequence elements of the adeno-associated virusrep gene required for suppressionof herpes-simplex-virus-induced DNA amplification[J]. Virology, 1995, 206(1):254-262.
[30] Alex M, Weger S, Mietzsch M, et al. DNA-Binding activity of adeno-associated virus rep is required for inverted terminal repeat-dependent complex formation with herpes simplex virus ICP8[J]. Journal of Virology, 2012, 86(5):2859-2863.
[31] Zarate-Perez F, Bardelli M, Burgner II JW, et al. The interdomain linker of AAV-2 Rep68 is an integral part of its oligomerization domain:role of a conserved SF3 helicase residue in oligomerization[J]. PLoS Pathogens, 2012, 8(6):e1002764.
[32] Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation[J]. Cell, 1989, 57(7):1083-1093.
[33] Amundson SA, Myers TG, Fornace Jr AJ. Roles for p53 in growth arrest and apoptosis:putting on the brakes after genotoxic stress[J]. Oncogene, 1998, 17(25):3287-3300.
[34] Blackford AN, Grand RJ. Adenovirus E1B 55-kilodalton protein:multiple roles in viral infection and cell transformation[J]. Journal of Virology, 2009, 83(9):4000-4012.
[35] Roth J, K?nig C, Wienzek S, et al. Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins[J]. Journal of Virology, 1998, 72(11):8510-8516.
[36] Morawska-Onyszczuk M, Bieńkowska-Szewczyk K, Dobbelstein M. Self-association of adenovirus type 5 E1B-55 kDa as well as p53 is essential for their mutual interaction[J]. Oncogene, 2009, 29(12):1773-1786.
[37] Batchu RB, Shammas MA, Wang JY, et al. Adeno-associated virus protects the retinoblastoma family of proteins from adenoviral-induced functional inactivation[J]. Cancer Research, 2002, 62(10):2982-2985.
[38] Wang J, Li W, Wang R, et al. Adeno-associated virus Rep78 restricts adenovirus E1B55K-mediated p53 nuclear exportation[J]. Acta biochimica et Biophysica Sinica, 2013, 45(2):135-140.
[39] Pennella MA, Liu Y, Woo JL, et al. Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies[J]. Journal of Virology, 2010, 84(23):12210-12225.
[40] Parrish CR. Structures and functions of parvovirus capsids and the process of cell infection[M]. Curr Top Microbiol Immunol, 2010, 343:149-176.
[41] 刘天会, 丛敏, 王萍, 等. 腺相关病毒 Rep78 蛋白抑制乙型肝炎病毒复制的体外研究[J]. 肝脏, 2006, 11(6):396-398.
[42] 阎钟钰, 丛敏, 王萍, 等. 腺相关病毒 Rep78 蛋白对乙型肝炎病毒C 基因的抑制作用[J]. 中华肝脏病杂志, 2005, 13(3):187-189.
[43] Vandenberghe LH, Breous E, Nam HJ, et al. Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints[J]. Gene Therapy, 2009, 16(12):1416-1428.
[44] Gray SJ, Choi VW, Asokan A, et al. Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration[J]. Current Protocols in Neuroscience, 2011, Chapter 4:Unit 4.17. doi:10.1002/0471142301.ns0417s57. |