Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (11): 84-90.
Previous Articles Next Articles
Wu Lu ,Wang Lei ,Ren Yuan, Yuan Hui
Received:
2014-01-26
Online:
2014-11-07
Published:
2014-11-07
Wu Lu ,Wang Lei ,Ren Yuan, Yuan Hui. The Research of Genome Editing[J]. Biotechnology Bulletin, 2014, 0(11): 84-90.
[1] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93:1156-1160. [2] Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins [J]. Annual Review of Biochemistry, 2001, 70:313-340. [3] Ramirez CL, Foley JE, Wright DA, et al. Unexpected failure rates for modular assembly of engineered zinc fingers [J]. Nature Methods, 2008, 5:374-375. [4] Beerli RR, Segal DJ, Dreier B, Barbas CF. Toward controlling gene expression at will:Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95:14628-14633. [5] Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs [J]. Nature Biotechnology, 2011, 29(8):697-698. [6] Gupta A, Christensen RG, Rayla AL, et al. An optimized two-finger archive for ZFN-mediated gene targeting [J]. Nature Methods, 2012, 9:588-590. [7] Townsend JA, Wright DA, Winfrey RJ, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases [J]. Nature, 2009, 459:442-445. [8] Boch J. TALEs of genome targeting [J]. Nature Biotechnology, 2011, 29:135-136. [9] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors [J]. Science, 2009, 326:1501. [10] Hockemeyer D, Wang HY, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases [J]. Nature Biotechnology, 2011, 29:731-734. [11] Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity [J]. Nucleic Acids Research, 2011, 39:9283-9293. [12] Zhang F, Cong L, Lodato S, et al. Efficient construction of sequence specific TAL effectors for modulating mammalian transcription [J]. Nature Biotechnology, 2011, 29:149-153. [13] Huang P, Xiao A, Zhou MG, et al. Heritable gene targeting in zebrafish using customized TALENs [J]. Nature Biotechnology, 2011, 29:699-700. [14] Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing [J]. Nature Biotechnology, 2012, 30:460-465. [15] Zu Y, Tong XJ, Wang ZX, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish [J]. Nature Methods, 2013, 10:329-331. [16] Mahfouz MM, Li LX, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108:2623-2628. [17] Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting [J]. Nucleic Acids Research, 2011, 39:e82. [18] Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs [J]. Nature Biotechnology, 2011, 29:695-696. [19] Hisano Y, Ota S, Arakawa K, et al. Quantitative assay for TALEN activity at endogenous genomic loci [J]. Biology Open, 2013, 2:363-367. [20] Liu H, Chen Y, Niu Y, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys [J]. Cell Stem Cell, 2014, 14:323-328. [21] Bacman SR, Williams SL, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs [J]. Nature Medicine, 2013, 19:1111-1113. [22] Wang HY, Hu YC, Markoulaki S, et al. TALEN-mediated editing of the mouse Y chromosome [J]. Nature Biotechnology, 2013, 31:530-532. [23] Hu RZ, Wallace J, Dahlem TJ, et al. Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs) [J]. PLoS One, 2013, 8:e63074. [24] Stoddard BL. Homing endonuclease structure and function [J]. Q Rev Biophys, 2005, 38(11):49-95. [25] Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences [J]. Nucleic Acids Research, 2006, 34:e149. [26] Gao H, Smith J, Yang M, et al. Heritable targeted mutagenesis in maize using a designed endonuclease [J]. Plant J, 2010, 61:176-187. [27] Redondo P, Prieto J, Mu?oz IG, et al. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases [J]. Nature, 2008, 456:107-111. [28] Jinek M, Chylinski K, Ines Fonfara, et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J]. Science, 2012, 337:816-821. [29] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucle-oprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:E2579-2586. [30] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339:819-823. [31] Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system [J]. Nature Biotechnology, 2013, 31:227-229. [32] Yang H, Wang H, Shivalila CS, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering [J]. Cell, 2013, 154:1370-1379. [33] DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Research, 2013, 41:4336-4343. [34] Cheng AW, Wang HY, Yang H, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system [J]. Cell Research, 2013, 23:1163-1171. [35] Perez-Pinera P, Kocak DD, Vockley CM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors [J]. Nature Methods, 2013, 10:973-976. [36] Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease [J]. Nature Biotechnology, 2013, 31:691-693. [37] Li JF, Norville JE, Aach J, et al. Multiplex and homologous recom-bination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nature Biotechno-logy, 2013, 31:688-691. [38] Hai T, Teng F, Guo RF, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system [J]. Cell Research, 2014, 24:372-375. [39] Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9 [J]. Cell Stem Cell, 2013, 13:659-662. [40] Niu YY, Shen B, Cui YQ, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos [J]. Cell, 2014, 156:836-843. [41] Koike-Yusa H, Li Y, Tan EP, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library [J]. Nature Biotechnology, 2013, 32:267-273. [42] Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells using the CRISPR-Cas9 system [J]. Science, 2013, 343:80-84. [43] Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human Cells [J]. Science, 2013, 343:84-87. [44] Fu YF, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells [J]. Nature Biotechnology, 2013, 31:822-826. [45] Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases [J]. Nature Biotechnology, 2013, 31:827-832. [46] Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity [J]. Nature Biotechnology, 2013, 31:839-843. [47] Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity [J]. Cell, 2013, 154:1380-1389. [48] Shen B, Zhang WS, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects [J]. Nature Methods, 2014, 11:399-402. [49] Grobet L, Martin LJ, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle [J]. Nature Genetics, 1997, 17:71-74. |
[1] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[2] | LIU Jia-hui, LIU Ye, HUA Er-bing, WANG Meng. PAM Extension of Cytosine Base Editing Tool in Corynebacterium glutamicum [J]. Biotechnology Bulletin, 2023, 39(9): 49-57. |
[3] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[4] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[5] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[6] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[7] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
[8] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[9] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[10] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[11] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[12] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[13] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[14] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[15] | TANG Guang-fu, GUI Yan-ling, MAN Hai-qiao, ZHAO Jie-hong. Editing pyrG Gene of Monascus by CRISPR/Cas 9 and Its Effects on Secondary Metabolism [J]. Biotechnology Bulletin, 2022, 38(8): 198-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||