Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (4): 49-58.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1163
Previous Articles Next Articles
ZHOU Xiao-jie1,2(), YANG Si-qi1,2, ZHANG Yi-wen3, XU Jia-qi4, YANG Sheng1()
Received:
2022-09-21
Online:
2023-04-26
Published:
2023-05-16
ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing[J]. Biotechnology Bulletin, 2023, 39(4): 49-58.
亚型 Subtype | 缩写或转座子编号 Abbreviation or transposon No. | 来源 Source | 底盘 Chassis | 最高效率 Highest efficiency | 参考文献 Reference |
---|---|---|---|---|---|
I-F | VchCAST | Vibrio cholerae Tn6677 | Escherichia coli | ~100% | [ |
Tatumella citrea | ~100% | [ | |||
Klebsiella oxytoca | N.D.* | [ | |||
Pseudomonas putida | N.D.* | [ | |||
Klebsiella michiganensis | ~0.010 | [ | |||
Pseudomonas simiae | ~0.003 | [ | |||
Ralstonia sp. UNC404CL21Col | ~0.001 | [ | |||
PtrCAST | Pseudoalteromonas translucida KMM520 | Escherichia coli | ~100% | [ | |
AsaCAST | Aeromonas salmonicidaS44 | Escherichia coli | 33.4% **&*** | [ | |
Tn7000 | Vibrio cholerae 4874 | Escherichia coli | ~1% | [ | |
Tn7001 | Photobactenium iliopiscarium NCIMB 13355 | Escherichia coli | ~1% | [ | |
Tn7002 | Vibrio sp.F12 | Escherichia coli | ~0.2% | [ | |
Tn7003 | Vibrnio parahaemolyticusFORC 071 | Escherichia coli | ~2% | [ | |
Tn7004 | Vibrio sp.16 | Escherichia coli | ~0.05% | [ | |
Tn7005 | Vibrio cholerae M1517 | Escherichia coli | ~45% | [ | |
Tn7006 | Vibrio splendidus UCD-SED10 | Escherichia coli | ~0.4% | [ | |
Tn7007 | Alivibrio wodanis06/09/160 | Escherichia coli | ~40% | [ | |
Tn7008 | Alivibrio sp.1S175 | Escherichia coli | ~0.13% | [ | |
Tn7009 | Parashewanella spongiaeHJ039 | Escherichia coli | ~50% | [ | |
Tn7010 | Photobacterium ganghwense JCM 12487 | Escherichia coli | ~0.4% | [ | |
Tn7011 | Pseudoalteromonas sp.P1-25 | Escherichia coli | ~48% | [ | |
Tn7012 | Pseudoalteromonas ruthenica S3245 | Escherichia coli | ~5% | [ | |
Tn7013 | Vibrio cholerae OYP7G04 | Escherichia coli | ~0.1% | [ | |
Tn7014 | Vibnio diazotrophicus60.6F | Escherichia coli | ~30% | [ | |
Tn7015 | Shewanella sp.UCD-KL21 | Escherichia coli | ~6% | [ | |
Tn7016 | Pseudoalteromonassp.S983 | Escherichia coli | ~80% | [ | |
Tn7017 | Endozoicomonas ascidicolaAVMARTO5 | Escherichia coli | ~16% | [ | |
I-B | AvCAST | Anabaena variabilis | Escherichia coli | 2.50% | [ |
PmcCAST | Peltigera membranacea cyanobiont 210A | Escherichia coli | 0.85% | [ | |
RoCAST | Rippkaea orientalis | Escherichia coli | N.D.* | [ | |
V-K | ShCAST | Scytonema hofmanni | Escherichia coli | 80% | [ |
Sinorhizobium meliloti | ~100% | [ | |||
Shewanella oneidensis MR-1 | 100% | [ | |||
Burkholderia thailandensis | ~100% ** | [ | |||
Pseudomonas putida | ~100% ** | [ | |||
Agrobacterium fabrum Anabaena | 40% ** N.D.* | [ [ | |||
ShoCAST | Scytonema hofmannii PCC 7110 | Escherichia coli | 40% | [ | |
AcCAST | Anabaena cylindrica | / | N.D.* | [ | |
ShHELIX | Scytonema hofmanni | Escherichia coli | ~80% | [ | |
ShoHELIX | Scytonema hofmannii PCC 7110 | Escherichia coli | ~50% | [ | |
AcHELIX | Anabaena cylindrica | Escherichia coli | ~90% | [ |
Table 1 Implementation of different subtype CASTs in bacteria
亚型 Subtype | 缩写或转座子编号 Abbreviation or transposon No. | 来源 Source | 底盘 Chassis | 最高效率 Highest efficiency | 参考文献 Reference |
---|---|---|---|---|---|
I-F | VchCAST | Vibrio cholerae Tn6677 | Escherichia coli | ~100% | [ |
Tatumella citrea | ~100% | [ | |||
Klebsiella oxytoca | N.D.* | [ | |||
Pseudomonas putida | N.D.* | [ | |||
Klebsiella michiganensis | ~0.010 | [ | |||
Pseudomonas simiae | ~0.003 | [ | |||
Ralstonia sp. UNC404CL21Col | ~0.001 | [ | |||
PtrCAST | Pseudoalteromonas translucida KMM520 | Escherichia coli | ~100% | [ | |
AsaCAST | Aeromonas salmonicidaS44 | Escherichia coli | 33.4% **&*** | [ | |
Tn7000 | Vibrio cholerae 4874 | Escherichia coli | ~1% | [ | |
Tn7001 | Photobactenium iliopiscarium NCIMB 13355 | Escherichia coli | ~1% | [ | |
Tn7002 | Vibrio sp.F12 | Escherichia coli | ~0.2% | [ | |
Tn7003 | Vibrnio parahaemolyticusFORC 071 | Escherichia coli | ~2% | [ | |
Tn7004 | Vibrio sp.16 | Escherichia coli | ~0.05% | [ | |
Tn7005 | Vibrio cholerae M1517 | Escherichia coli | ~45% | [ | |
Tn7006 | Vibrio splendidus UCD-SED10 | Escherichia coli | ~0.4% | [ | |
Tn7007 | Alivibrio wodanis06/09/160 | Escherichia coli | ~40% | [ | |
Tn7008 | Alivibrio sp.1S175 | Escherichia coli | ~0.13% | [ | |
Tn7009 | Parashewanella spongiaeHJ039 | Escherichia coli | ~50% | [ | |
Tn7010 | Photobacterium ganghwense JCM 12487 | Escherichia coli | ~0.4% | [ | |
Tn7011 | Pseudoalteromonas sp.P1-25 | Escherichia coli | ~48% | [ | |
Tn7012 | Pseudoalteromonas ruthenica S3245 | Escherichia coli | ~5% | [ | |
Tn7013 | Vibrio cholerae OYP7G04 | Escherichia coli | ~0.1% | [ | |
Tn7014 | Vibnio diazotrophicus60.6F | Escherichia coli | ~30% | [ | |
Tn7015 | Shewanella sp.UCD-KL21 | Escherichia coli | ~6% | [ | |
Tn7016 | Pseudoalteromonassp.S983 | Escherichia coli | ~80% | [ | |
Tn7017 | Endozoicomonas ascidicolaAVMARTO5 | Escherichia coli | ~16% | [ | |
I-B | AvCAST | Anabaena variabilis | Escherichia coli | 2.50% | [ |
PmcCAST | Peltigera membranacea cyanobiont 210A | Escherichia coli | 0.85% | [ | |
RoCAST | Rippkaea orientalis | Escherichia coli | N.D.* | [ | |
V-K | ShCAST | Scytonema hofmanni | Escherichia coli | 80% | [ |
Sinorhizobium meliloti | ~100% | [ | |||
Shewanella oneidensis MR-1 | 100% | [ | |||
Burkholderia thailandensis | ~100% ** | [ | |||
Pseudomonas putida | ~100% ** | [ | |||
Agrobacterium fabrum Anabaena | 40% ** N.D.* | [ [ | |||
ShoCAST | Scytonema hofmannii PCC 7110 | Escherichia coli | 40% | [ | |
AcCAST | Anabaena cylindrica | / | N.D.* | [ | |
ShHELIX | Scytonema hofmanni | Escherichia coli | ~80% | [ | |
ShoHELIX | Scytonema hofmannii PCC 7110 | Escherichia coli | ~50% | [ | |
AcHELIX | Anabaena cylindrica | Escherichia coli | ~90% | [ |
[1] |
Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722-736.
doi: 10.1038/nrmicro3569 pmid: 26411297 |
[2] |
Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli[J]. Nucleic Acids Res, 2012, 40(12): 5569-5576.
doi: 10.1093/nar/gks216 pmid: 22402487 |
[3] |
Carte J, Wang RY, Li H, et al. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes[J]. Genes Dev, 2008, 22(24): 3489-3496.
doi: 10.1101/gad.1742908 URL |
[4] | Swarts DC, Mosterd C, et al. CRISPR interference directs strand specific spacer acquisition[J]. PLoS One, 2012, 7(4): e35888. |
[5] |
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573.
doi: 10.1126/science.aaf5573 URL |
[6] |
Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033 pmid: 23287722 |
[7] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249 |
[8] |
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548 |
[9] |
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588.
doi: 10.1038/nature14136 |
[10] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 23452860 |
[11] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
doi: 10.1038/nature17946 |
[12] |
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-cas13[J]. Science, 2017, 358(6366): 1019-1027.
doi: 10.1126/science.aaq0180 pmid: 29070703 |
[13] |
East-Seletsky A, O' Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624): 270-273.
doi: 10.1038/nature19802 |
[14] |
Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
doi: 10.1126/science.aar6245 pmid: 29449511 |
[15] |
Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria[J]. Biotechnol Bioeng, 2016, 113(5): 930-943.
doi: 10.1002/bit.25851 pmid: 26460902 |
[16] |
Hickman AB, Dyda F. DNA transposition at work[J]. Chem Rev, 2016, 116(20): 12758-12784.
doi: 10.1021/acs.chemrev.6b00003 pmid: 27187082 |
[17] |
Ravindran S. Barbara McClintock and the discovery of jumping genes[J]. Proc Natl Acad Sci USA, 2012, 109(50): 20198-20199.
doi: 10.1073/pnas.1219372109 pmid: 23236127 |
[18] |
Fedoroff NV. The discovery and characterization of transposable elements. The collected papers of Barbara McClintock[J]. Cell, 1988, 53(1): 9-10.
doi: 10.1016/0092-8674(88)90481-3 URL |
[19] |
Kapitonov VV, Jurka J. Rolling-circle transposons in eukaryotes[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8714-8719.
doi: 10.1073/pnas.151269298 pmid: 11447285 |
[20] |
Kapitonov VV, Jurka J. Self-synthesizing DNA transposons in eukaryotes[J]. Proc Natl Acad Sci USA, 2006, 103(12): 4540-4545.
doi: 10.1073/pnas.0600833103 pmid: 16537396 |
[21] |
Craig NL. Tn7: a target site-specific transposon[J]. Mol Microbiol, 1991, 5(11): 2569-2573.
pmid: 1664019 |
[22] |
Koch B, Jensen LE, Nybroe O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site[J]. J Microbiol Methods, 2001, 45(3): 187-195.
doi: 10.1016/s0167-7012(01)00246-9 pmid: 11348676 |
[23] | Peters JE, Craig NL. Tn7: smarter than we thought[J]. Nat Rev Mol Cell Biol, 2001, 2(11): 806-814. |
[24] |
Kaczmarska Z, Czarnocki-Cieciura M, Górecka-Minakowska KM, et al. Structural basis of transposon end recognition explains central features of Tn7 transposition systems[J]. Mol Cell, 2022, 82(14): 2618-2632.e7.
doi: 10.1016/j.molcel.2022.05.005 pmid: 35654042 |
[25] |
Morero NR, Zuliani C, Kumar B, et al. Targeting IS608 transposon integration to highly specific sequences by structure-based transposon engineering[J]. Nucleic Acids Res, 2018, 46(8): 4152-4163.
doi: 10.1093/nar/gky235 pmid: 29635476 |
[26] | Peters JE, Makarova KS, Shmakov S, et al. Recruitment of CRISPR-Cas systems by Tn7-like transposons[J]. Proc Natl Acad Sci USA, 2017, 114(35): E7358-E7366. |
[27] |
Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448): 48-53.
doi: 10.1126/science.aax9181 pmid: 31171706 |
[28] |
Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764): 219-225.
doi: 10.1038/s41586-019-1323-z |
[29] |
Ma W, Xu YS, Sun XM, et al. Transposon-associated CRISPR-cas system: a powerful DNA insertion tool[J]. Trends Microbiol, 2021, 29(7): 565-568.
doi: 10.1016/j.tim.2021.01.017 pmid: 33612399 |
[30] |
Faure G, Shmakov SA, Yan WX, et al. CRISPR-Cas in mobile genetic elements: counter-defence and beyond[J]. Nat Rev Microbiol, 2019, 17(8): 513-525.
doi: 10.1038/s41579-019-0204-7 pmid: 31165781 |
[31] |
Gleditzsch D, Müller-Esparza H, Pausch P, et al. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system[J]. Nucleic Acids Res, 2016, 44(12): 5872-5882.
doi: 10.1093/nar/gkw469 pmid: 27216815 |
[32] |
Krupovic M, Makarova KS, Forterre P, et al. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity[J]. BMC Biol, 2014, 12: 36.
doi: 10.1186/1741-7007-12-36 pmid: 24884953 |
[33] |
Rybarski JR, Hu K, Hill AM, et al. Metagenomic discovery of CRISPR-associated transposons[J]. Proc Natl Acad Sci USA, 2021, 118(49): e2112279118.
doi: 10.1073/pnas.2112279118 URL |
[34] |
Yang SQ, Zhang YW, Xu JQ, et al. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration[J]. Nucleic Acids Res, 2021, 49(17): 10192-10202.
doi: 10.1093/nar/gkab752 pmid: 34478496 |
[35] |
Petassi MT, Hsieh SC, Peters JE. Guide RNA categorization enables target site choice in Tn7-CRISPR-cas transposons[J]. Cell, 2020, 183(7): 1757-1771.e18.
doi: 10.1016/j.cell.2020.11.005 pmid: 33271061 |
[36] |
Klompe SE, Jaber N, Beh LY, et al. Evolutionary and mechanistic diversity of type I-F CRISPR-associated transposons[J]. Mol Cell, 2022, 82(3): 616-628.e5.
doi: 10.1016/j.molcel.2021.12.021 pmid: 35051352 |
[37] |
Saito M, Ladha A, Strecker J, et al. Dual modes of CRISPR-associated transposon homing[J]. Cell, 2021, 184(9): 2441-2453.e18.
doi: 10.1016/j.cell.2021.03.006 pmid: 33770501 |
[38] |
Wimmer F, Mougiakos I, Englert F, et al. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons[J]. Mol Cell, 2022, 82(6): 1210-1224.e6.
doi: 10.1016/j.molcel.2022.01.026 pmid: 35216669 |
[39] |
Özcan A, Pausch P, Linden A, et al. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum[J]. Nat Microbiol, 2019, 4(1): 89-96.
doi: 10.1038/s41564-018-0274-8 |
[40] |
Vo PLH, Acree C, Smith ML, et al. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing[J]. Mob DNA, 2021, 12(1): 13.
doi: 10.1186/s13100-021-00242-2 |
[41] |
Vo PLH, Ronda C, Klompe SE, et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering[J]. Nat Biotechnol, 2021, 39(4): 480-489.
doi: 10.1038/s41587-020-00745-y pmid: 33230293 |
[42] |
Park JU, Tsai AWL, Chen TH, et al. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM[J]. Proc Natl Acad Sci USA, 2022, 119(32): e2202590119.
doi: 10.1073/pnas.2202590119 URL |
[43] |
Park JU, Tsai AWL, Mehrotra E, et al. Structural basis for target site selection in RNA-guided DNA transposition systems[J]. Science, 2021, 373(6556): 768-774.
doi: 10.1126/science.abi8976 URL |
[44] |
Querques I, Schmitz M, Oberli S, et al. Target site selection and remodelling by type V CRISPR-transposon systems[J]. Nature, 2021, 599(7885): 497-502.
doi: 10.1038/s41586-021-04030-z |
[45] |
Park JU, Tsai AWL, Rizo AN, et al. Structures of the holo CRISPR RNA-guided transposon integration complex[J]. bioRxiv, 2022, DOI:10.1101/2022.10.12.511933.
doi: 10.1101/2022.10.12.511933 |
[46] |
Schmitz M, Querques I, Oberli S, et al. Structural basis for RNA-mediated assembly of type V CRISPR-associated transposons[J]. bioRxiv, 2022. DOI:10.1101/2022.06.17.496590.
doi: 10.1101/2022.06.17.496590 |
[47] |
Jia N, Xie W, de la Cruz MJ, et al. Structure-function insights into the initial step of DNA integration by a CRISPR-Cas-Transposon complex[J]. Cell Res, 2020, 30(2): 182-184.
doi: 10.1038/s41422-019-0272-2 pmid: 31925391 |
[48] |
Wang BB, Xu WH, Yang H. Structural basis of a Tn7-like transposase recruitment and DNA loading to CRISPR-Cas surveillance complex[J]. Cell Res, 2020, 30(2): 185-187.
doi: 10.1038/s41422-020-0274-0 pmid: 31913359 |
[49] |
Li Z, Zhang H, Xiao RJ, et al. Cryo-EM structure of a type I-F CRISPR RNA guided surveillance complex bound to transposition protein TniQ[J]. Cell Res, 2020, 30(2): 179-181.
doi: 10.1038/s41422-019-0268-y pmid: 31900425 |
[50] |
Halpin-Healy TS, Klompe SE, Sternberg SH, et al. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system[J]. Nature, 2020, 577(7789): 271-274.
doi: 10.1038/s41586-019-1849-0 |
[51] |
Hoffmann FT, Kim M, Beh LY, et al. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition[J]. Nature, 2022, 609(7926): 384-393.
doi: 10.1038/s41586-022-05059-4 |
[52] |
Yang JJ, Yang JW, Zhang YW, et al. CRISPR-associated transposase system can insert multiple copies of donor DNA into the same target locus[J]. CRISPR J, 2021, 4(6): 789-798.
doi: 10.1089/crispr.2021.0019 pmid: 34847728 |
[53] |
Jiang Y, Chen B, Duan CL, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Appl Environ Microbiol, 2015, 81(7): 2506-2514.
doi: 10.1128/AEM.04023-14 URL |
[54] | Feng X, Zhao DD, Zhang XL, et al. CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli[J]. Biotechnol J, 2018, 13(9): e1700604. |
[55] |
Bhatt S, Chalmers R. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein[J]. Nucleic Acids Res, 2019, 47(15): 8126-8135.
doi: 10.1093/nar/gkz552 URL |
[56] |
Chen SP, Wang HH. An engineered cas-transposon system for programmable and site-directed DNA transpositions[J]. CRISPR J, 2019, 2(6): 376-394.
doi: 10.1089/crispr.2019.0030 pmid: 31742433 |
[57] |
Wang G, Yang LH, Grishin D, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies[J]. Nat Protoc, 2017, 12(1): 88-103.
doi: 10.1038/nprot.2016.152 pmid: 27929521 |
[58] |
Ma SF, Wang XL, Hu YF, et al. Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain[J]. Nucleic Acids Res, 2020, 48(18): 10590-10601.
doi: 10.1093/nar/gkaa779 pmid: 32986839 |
[59] |
Tou CJ, Orr B, Kleinstiver BP. Cut-and-paste DNA insertion with engineered type V-K CRISPR-associated transposases[J]. bioRxiv, 2022. DOI:10.1101/2022.01.07.475005.
doi: 10.1101/2022.01.07.475005 |
[60] |
Zhang YW, Sun XM, Wang QZ, et al. Multicopy chromosomal integration using CRISPR-associated transposases[J]. ACS Synth Biol, 2020, 9(8): 1998-2008.
doi: 10.1021/acssynbio.0c00073 pmid: 32551502 |
[61] |
Cheng ZH, Wu J, Liu JQ, et al. Repurposing CRISPR RNA-guided integrases system for one-step, efficient genomic integration of ultra-long DNA sequences[J]. Nucleic Acids Res, 2022, 50(13): 7739-7750.
doi: 10.1093/nar/gkac554 URL |
[62] |
Cui YL, Dong HN, Tong BS, et al. A versatile Cas12k-based genetic engineering toolkit(C12KGET)for metabolic engineering in genetic manipulation-deprived strains[J]. Nucleic Acids Res, 2022, 50(15): 8961-8973.
doi: 10.1093/nar/gkac655 URL |
[63] |
Rodríguez LT, Ellington AJ, Reisch CR. Broad-host-range mutagenesis with CRISPR-associated transposase[J]. bioRxiv, 2022. DOI:10.1101/2022.01.19.475551.
doi: 10.1101/2022.01.19.475551 |
[64] |
Arévalo S, Rico DP, Abarca MD, et al. Towards genome-engineering in complex cyanobacterial communities: RNA-guided transposition in Anabaena[J]. bioRxiv, 2022. DOI: 10.1101/2022.09.18.508393.
doi: 10.1101/2022.09.18.508393 |
[65] |
Rubin BE, Diamond S, Cress BF, et al. Species- and site-specific genome editing in complex bacterial communities[J]. Nat Microbiol, 2022, 7(1): 34-47.
doi: 10.1038/s41564-021-01014-7 |
[66] |
Zhang YW, Yang JW, Yang SQ, et al. Programming cells by multicopy chromosomal integration using CRISPR-associated transposases[J]. CRISPR J, 2021, 4(3): 350-359.
doi: 10.1089/crispr.2021.0018 pmid: 34152213 |
[1] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[2] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[3] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[4] | LIU Xiao-tian, QIU Hao, TIAN Li, REN Ang, ZHAO Ming-wen. Research Progress in CRISPR/Cas9 Genome Editing System in Edible and Medicinal Fungi [J]. Biotechnology Bulletin, 2021, 37(11): 4-13. |
[5] | GAO Wei-fang, ZHANG Li-ping, ZHU Peng. Recent Progress on Isothermal Amplification Technology and Its Combination with CRISPR in Rapid Detection of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(5): 22-31. |
[6] | YE Ming-wang, LI Can-hui, GONG Ming. Applications and Prospect of Genome Editing Techniques in Precise Potato Molecular Breeding [J]. Biotechnology Bulletin, 2020, 36(3): 9-17. |
[7] | ZHOU Yan, GUO Jia, HU Yu-feng, WEI Jian, LI Yi-dan. Editing of Fragrant Rice Related Gene OsBADH2 in‘Jijing 88’ [J]. Biotechnology Bulletin, 2020, 36(3): 88-94. |
[8] | QIAO Long-liang, PANG Jian-hu, DANG Chen-yang, HUANG Hai-long, ZHU Peng. CRISPR/Cas9 Genome Editing Technology and Its Application in Streptomyces [J]. Biotechnology Bulletin, 2018, 34(5): 32-40. |
[9] | YAO Heng, YANG Da-hai, BAI Ge, XIE He. CRISPR/Cas9-mediated Targeted Knockout of Polyphenol Oxidase NtPPO1 Gene in Nicotiana tabacum [J]. Biotechnology Bulletin, 2018, 34(11): 97-102. |
[10] | YIN Chao-min, FAN Xiu-zhi, SHI De-fang, GAO Hong. CRISPR/Cas Genome Editing Technology and Its Application in Fungi [J]. Biotechnology Bulletin, 2017, 33(3): 58-65. |
[11] | LIU Ni, LU Qin, LIU Juan, CHEN Hang. The Latest Research Progress on CRISPR/Cas System [J]. Biotechnology Bulletin, 2017, 33(2): 53-58. |
[12] | YANG Ju, DENG Yu. Key Technologies and Applications of Synthetic Biology [J]. Biotechnology Bulletin, 2017, 33(1): 12-23. |
[13] | ZHANG Kai-li,LI Rui,HU Tong-tong,XU Yong-jie. The Development of CRISPR/Cas9 Technique and Its Applications in Genome Editing [J]. Biotechnology Bulletin, 2016, 32(5): 47-60. |
[14] | LI Wei-jie, YANG Jiao, HE Gao-ming, WANG Li-min, PI Wen-hui, ZHOU Ping. The Comparison of Three Methods of Monitoring Endogenous Gene Modification [J]. Biotechnology Bulletin, 2016, 32(2): 76-83. |
[15] | Li Dan, Gao Haijun. Multiplex Automated Genome Engineering [J]. Biotechnology Bulletin, 2015, 31(6): 60-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||