Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (1): 58-64.doi: 10.13560/j.cnki.biotech.bull.1985.2016.01.010
Previous Articles Next Articles
HOU Xiao-yuan, GU Ru-lin, LIANG Wen-long, XIAO Zi-jun
Received:
2015-03-25
Online:
2016-01-09
Published:
2016-01-22
HOU Xiao-yuan, GU Ru-lin, LIANG Wen-long, XIAO Zi-jun. Research Progress on Production of Tetramethylpyrazine by Fermentation[J]. Biotechnology Bulletin, 2016, 32(1): 58-64.
[1] Masuda H, Mihara S. Olfactive properties of alkylpyrazines and 3-substituted 2-alkylpyrazines[J]. J Agric Food Chem, 1988, 36(3):584-587. [2] Burdock GA. Encyclopedia of food and color additives, Volume 3[M]. 1st edition. New York:CRC Press, Inc, 1997:2769-2770. [3] Fan W, Xu Y, Qian M. Identification of aroma compounds in Chinese “Moutai” and “Langjiu” liquors by normal phase liquid chromatography fractionation followed by gas chromatography/olfactometry[M]// Qian MC, Shellhammer TH. Flavor Chemistry of Wine and Other Alcoholic Beverages. Washington:Oxford University Press Inc, 2012:303-338. [4] 蒋跃绒, 陈可冀. 川芎嗪的心脑血管药理作用及临床应用研究进展[J]. 中国中西医结合杂志, 2013, 33(5):707-711. [5] Guo SK, Chen KJ, Qian ZH, et al. Tetramethylpyrazine in the treatment of cardiovascular and cerebrovascular diseases[J]. Planta Med, 1983, 47(2):89. [6] Watanabe H. Candidates for cognitive enhancer extracted from medicinal plants:paeoniflorin and tetramethylpyrazine[J]. Behav Brain Res, 1997, 83(1-2):138-141. [7] Chang FC, Huang YT, Lin HC, et al. Beneficial effects of combined terlipressin and tetramethylpyrazine administration on portal hypertensive rats[J]. Can J Physiol Pharm, 1999, 8:618-624. [8] Tsai TH, Liang CC. Pharmacokinetics of tetramethylpyrazine in rat blood and brain using microdialysis[J]. Int J Pharm, 2001, 216(1-2):61-66. [9] 吴建峰. 中国白酒中健康功能性成分四甲基吡嗪的研究[J]. 酿酒科技, 2007(1):117-120. [10] Xu W, Xu Q, Chen J, et al. Ligustrazine formation in Zhenjiang aromatic vinegar:changes during fermentation and storing process[J]. J Sci Food Agric, 2011, 91(9):1612-1617. [11] Ebihara K, Nakajima A. Effect of acetic acid and vinegar on blood glucose and insulin responses to orally administered sucrose and starch[J]. Agric Biol Chem, 1988, 52(5):1311-1312. [12] Kondo S, Tayama K, Tsukamoto Y, et al. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats[J]. Biosci Biotechnol Biochem, 2001, 65(12):2690-2694. [13] Kishi M, Fukaya M, Tsukamoto Y, et al. Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectomized rats[J]. Biosci Biotechnol Biochem, 1999, 63(5):905-910. [14] Weitz HM, Fischer RH. Manufacture of pyrazines:US, 4064124 [P]. 1977-12-20. [15] Sato K. Process for preparing pyrazines:US, 4097478[P]. 1977-3-31. [16] Chang CD, Perkins PD. Process for making alkyl pyrazines:US, 4855431[P]. 1989-8-8. [17] Amrani HM, Cerny C, Fay LB. Mechanisms of formation of alkylpyrazines in the Maillard reaction[J]. J Agric Food Chem, 1995, 43(11):2818-2822. [18] Shoji T, Nakaishi T, Mikata M. Process for producing pyrazine compounds:US, 5693806[P]. 1997-12-2. [19] Demain AL, Jackson M, Trenner NR. Thiamine-dependent accumulation of tetramethylpyrazine accompanying a mutation in isoleucine-valine pathway[J]. J Bacteriol, 1967, 2:323-326. [20] Kim KS, Lee HJ, Shon DH, et al. Optimum conditions for the production of tetramethylpyrazine flavor compound by aerobic fed-batch culture of Lactococcus lactis subsp. Lactis biovar. diacetilactis FC1[J]. J Microbiol Biotechnol, 1994, 4(4):327-332. [21] Xiao ZJ, Xie NZ, Liu PH, et al. Tetramethylpyrazine production from glucose by a newly isolation Bacillus mutant[J]. Appl Microbiol Biotechnol, 2006, 73(3):512-518. [22] Yamaguchi N, Toda T, Teramoto T, et al. Studies on pyrazine formation by Bacillus natto. V. Effect of sugars on microbiological pyrazine formation by Bacillus natto in synthetic liquid medium [J]. Nippon Shokuhin Kogyo Gakkaishi, 1993, 12:841-848. [23] Larroche C, Besson I, Gross JB. High pyrazine production by Bacillus subtilis in solid substrate fermentation on ground soybeans[J]. Process Biochem, 1999, 34(6-7):667-674. [24] Besson I, Creuly C, Gross JB, et al. Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans[J]. Appl Microbiol Biotechnol, 1997, 47(5):489-495. [25] Kosuge T, Kamiya H. Discovery of a pyrazine in a natural product:tetramethylpyrazine from cultures of a strain of Bacillus subtilis[J]. Nature, 1962, 193(4817):776. [26] Reineccius GA, Keeney PG, Weissberger W. Factors affecting the concentration of pyrazines in cocoa beans[J]. J Agric Food Chem, 1972, 20(2):202-206. [27] Kosuge T, Adachi T, Kamiya H. Isolation of tetramethylpyrazine from cultures of Bacillus natto and biosynthetic pathways of tetramethylpyrazine[J]. Nature, 1962, 195(4846):1103. [28] Adachi T, Kamiya H, Kosuge T. Studies on the metabolic products of Bacillus subtilis. ii. the production of tetramethylpyrazine by natto[J]. Yakugaku Zasshi, 1964, 84(5):451-452. [29] Adachi T, Kamiya H, Kosuge T. Studies on the metabolic products of Bacillus subtilis. III. relation between amino acids and tetramethylpyrazine production[J]. Yakugaku Zasshi, 1964, 84(6):543-545. [30] Huang TC, Fu HY, Ho CT. Mechanistic studies of tetramethylpyra-zine formation under weak acidic conditions and high hydrostatic pressure[J]. J Agric Food Chem, 1996, 44(1):240-246. [31] Rizzi GP. Formation of pyrazines from acyloin precursors under mild conditions[J]. J Agric Food Chem, 1988, 2:349-352. [32] 吴建峰, 徐岩. 白酒细菌酒曲固态培养条件下B. subtilis S12产四甲基吡嗪的合成机制[J]. 食品与生物技术学报, 2014, 33(1):8-15. [33] Xiao Z, Hou X, Lyu X, et al. Accelerated green process of tetramethylpyrazine production from glucose and diammonium phosphate[J]. Biotechnol Biofuels, 2014, 7(7):106-113. [34] Huang TC. Combined effects of a buffer and solvent on tetramethylpyrazine formation in a 3-hydroxy-3 butanone/ammonium hydroxide system[J]. Biosci Biotech Biochem, 1997, 61(6):1013-1015. [35] Xiao Z, Lu JR. Generation of acetoin and its derivatives in foods[J]. J Agric Food Chem, 2014, 62(28):6487-6497. [36] Fu HY, Ho CT. Mechanistic studies of 2-(1-hydroxyethyl)-2, 4, 5-trimethyl-3-oxazoline formation under low temperature in 3-hydroxy-2-butanone/ammonium acetate model systems[J]. J Agric Food Chem, 1997, 45(5):1878-1882. [37] Zhu B, Xu Y, Fan W. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach[J]. J Ind Microbiol Biotechnol, 2010, 2:179-186. [38] Xiao Z, Lu JR. Strategies for enhancing fermentative production of acetoin:A review[J]. Biotechnol Adv, 2014, 2:492-503. [39] Zhu B, Xu Y. A feeding strategy for tetramethylpyrazine production by bacillus subtilis based on the stimulating effect of ammonium phosphate[J]. Bioprocess Biosyst Eng, 2010, 33(8):953-959. [40] 朱兵峰, 徐岩. 一种用于枯草芽孢杆菌发酵生产四甲基吡嗪的补料策略[J]. 酿酒科技, 2011(2):17-22. [41] Hao F, Wu Q, Xu Y. Precursor supply strategy for tetramethylpyra-zine production by Bacillus subtilis on solid-state fermentation of wheat bran[J]. Appl Biochem Biotechnol, 2013, 169(4):1346-1352. [42] 徐岩, 朱兵峰. 一种生产四甲基吡嗪的方法及其生产菌株:中国, CN101955980B[P]. 2013-5-22. [43] Zhu B, Xu Y. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy[J]. J Ind Microbiol Biotechnol, 2010, 37(8):815-821. |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[4] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[5] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[6] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[7] | LI Xin-yue, ZHOU Ming-hai, FAN Ya-chao, LIAO Sha, ZHANG Feng-li, LIU Chen-guang, SUN Yue, ZHANG Lin, ZHAO Xin-qing. Research Progress in the Improvement of Microbial Strain Tolerance and Efficiency of Biological Manufacturing Based on Transporter Engineering [J]. Biotechnology Bulletin, 2023, 39(11): 123-136. |
[8] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[9] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[10] | REN Hai-wei, SUN Yi-fan, REN Yu-wei, GUO Xiao-peng, PAN Li-chao, ZHANG Bing-yun, LI Jin-ping. Research Progress of Silage Additives Based on Bibliometrics [J]. Biotechnology Bulletin, 2022, 38(8): 261-274. |
[11] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[12] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
[13] | JIANG Huan, MA Jiang-shan, ZENG Bai-quan, ZHANG Liang-bo, LI Pei-wang. Research Progress in 1, 3-Propanediol Production by Fermenting Crude Glycerol [J]. Biotechnology Bulletin, 2022, 38(10): 45-53. |
[14] | SHI Zhao-rong, SUN Shu-jun, ZHANG Guang-rong, MEI Da-hai, LIU Yan-chao, YANG Cheng-de. Screening,Identification and Fermentation Condition Optimization of an Antagonistic Bacterium for Melon Black Spot [J]. Biotechnology Bulletin, 2022, 38(1): 115-124. |
[15] | XU Jin-yi, NA Bin-bin, LIU Shun, CHEN Chao, SUN Hong, ZHENG Yu-long. Excellent Lactic Acid Bacteria for Silage and Their Application [J]. Biotechnology Bulletin, 2021, 37(9): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||