[1] Brody H. Prostate cancer[J]. Nature, 2015, 528(7582):S117. [2] Esteller M. Molecular origins of cancer:epigenetics in cancer[J]. New Engl J Med, 2008, 358:1148-1159. [3] Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomicpro-files delineate potential role for sarcosine in prostate cancer progres-sion[J]. Nature, 2009, 457(7231):910-914. [4] Yang L, Lin C, Jin C, et al. LncRNA-dependent mechanisms of androgen-receptor- regulated gene activation programs[J]. Nature, 2013, 500(7464):598-602. [5] Ni X, Zhuo M, Su Z, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients[J]. Proc Natl Acad Sci USA, 2013, 110(52):21083-21088. [6] Miyamoto D, Zheng Y, Wittner B, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance[J]. Science, 2015, 349(6254):1351-1356. [7] Liu H, Li Y, Sun K, et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells[J]. J Am Chem Soc, 2013, 135(20):7603-7609. [8] Yang G, Cao Y, Fan J, et al. Rapid generation of cell gradients by utilizing solely nanotopographic interactions on a bio-inert glass surface[J]. Angew Chem Int Ed, 2014, 53(11):2915-2918. [9] Tan W, Donovan MJ, Jiang J. Aptamers from Cell-based selection for bioanalytical applications[J]. Chem Rev, 2013, 113(4):2842-2862. [10] Yang L, Meng L, Zhang X. Engineering polymeric aptamers for selective cytotoxicity[J]. J Am Chem Soc, 2011, 133(34):13380-13386. [11] Wen C, Wu L, Zhang Z, et al. Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells[J]. ACS Nano, 2014, 8(1):941-949. [12] Tang M, Wen C, Wu L, et al. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells[J]. Lab Chip, 2016, 16(7):1214-1223. [13] Jones MR, Seeman NC, Mirkin CA. Programmable materials and the nature of the DNA bond[J]. Science, 2015, 347(6224):DOI:10. 1126/science. 1260901. [14] Han D, Pal S, Nangreave J, et al. DNA origami with complex curvatures in Three- Dimensional space[J]. Science, 2011, 332(6027):342-346. [15] Fu Y, Zeng D, Chao J, et al. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors[J]. J Am Chem Soc, 2013, 135(2):696-702. [16] Lu N, Pei H, Ge Z, et al. Charge transport within a three-dimensional DNA nanostructure framework[J]. J Am Chem Soc, 2012, 134(32):13148-13151. [17] Li C, Faulkner-Jones A, Dun AR, et al. Rapid formation of a supramolecular polypeptide- DNA hydrogel for in situ three-dimensional multilayer bioprinting[J]. Angew Chem Int Ed, 2015, 54(13):3957-3961. [18] Zhao Z, Chen C, Dong Y, et al. Thermally triggered frame-guided assembly[J]. Angew Chem Int Ed, 2014, 53(49):13468-13470. [19] Zhou Y, Zhu S, Cai C, et al. High-throughput screening of a CRISPR/Cas9 Library for functional genomics in human cells[J]. Nature, 2014, 509(7501):487-491. [20] Streets AM, Zhang X, Cao C, et al. Microfluidic single-cell whole-transcriptome sequencing[J]. Proc Natl Acad Sci USA, 2014, 111(19):7048-7053. |