[1] 周吉奎, 钮因健. 硫化矿生物冶金研究进展[J] . 金属矿山, 2015(04):24-30. [2] 周洪波, 毛峰, 王玉光. 嗜酸微生物与生物冶金技术[J] . 矿物岩石地球化学通报, 2015(2):269-276. [3] Li Y, Kawashima N, Li J, et al. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite[J] . Advances in Colloid & Interface Science, 2013, 197-198(9):1-32. [4] Peng AA, Xia JL, Liu HC, et al. Differential utilization of cyclic, or-thorhombic α- and chain-like polymeric μ-sulfur by Acidithiobacillus ferrooxidans[J] . Transactions of Nonferrous Metals Society of China, 2014, 24(5):1562-1570. [5] Rohwerder T, Sand W. Properties of thiols required for sulfur dioxygenase activity at acidic pH[J] . Journal of Sulfur Chemistry, 2008, 29:293-302. [6] Zeng J, Davies M. Evidence for the formation of adducts and s-(carboxymethyl)cysteine on reaction of α-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins[J] . Chemical Research in Toxicology 2005, 18:1232-1241. [7] Xia JL, Liu HC, Nie ZY, et al. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+)and S(0)[J] . Journal of Microbiological Methods, 2013, 94(3):257-261. [8] Liu HC, Xia JL, Nie ZY, et al. Differential expression of extracellular thiol groups of moderately thermophilic Sulfobacillus thermosulfido-oxidans, and extremely thermophilic Acidianus manzaensis, grown on S0, and Fe2+[J] . Archives of Microbiology, 2015, 197(6):1-9. [9] Friedrich CG, Bardischewsky F, Rother D, et al. Prokaryotic sulfur oxidation[J] . Current Opinion in Microbiology, 2005, 8(3):253-259. [10] Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans[J] . Bmc Genomics, 2009, 10(9):507-521. [11] Liu HC, Xia JL, Nie ZY, et al. Iron L-edge and sulfur K-edge XANES spectroscopy analysis of pyrite leached by Acidianus manzaensis[J] . Transactions of Nonferrous Metals Society of China, 2015, 25(7):2407-2414. [12] 彭安安. 嗜酸硫氧化细菌元素硫活化氧化机制研究[D] . 长沙:中南大学, 2012. [13] Hammond JBW, Kruger NJ. The bradford method for protein quantitation. [J] . Methods in Molecular Biology, 1994, 32(32):9-15. [14] 孔令琼, 管政兵, 陆健, 等. 绍兴黄酒成品麦曲中微生物胞外酶的双向电泳技术的建立[J] . 食品与生物技术学报, 2011, 30(3):453-457. [15] Ramírez P, Guiliani N, Valenzuela L, et al. Differential Protein Expression during Growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides[J] . Applied & Environmental Microbiology, 2004, 70(8):4491-4498. [16] Bonnefoy V. Bioinformatics and Genomics of Iron- and Sulfur-Oxidizing Acidophiles[M] // Geomicrobiology:Molecular and Environmental Perspective. Springer Netherlands, 2010:169-192. [17] Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper - Excel-based tool using pair-wise correlations[J] . Biotechnology Letters, 2004, 26(6):509-515. [18] Wang H, Liu S, Liu X, et al. Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp[J] . Applied Microbiology & Biotechnology, 2014, 98(17):7511-22. [19] Boretska M, Bellenberg S, Moshynets O, et al. Change of extracellular polymeric substances composition of Thiobacillus thioparus in presence of sulfur and steel[J] . Microbial & Biochemical Technology, 2013, 5(3):68-73. [20] Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans[J] . Bmc Genomics, 2009, 10(1):507-521. [21] Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp.[J] . Microbiology, 2003, 149(Pt 7):1699-710. [22] Peng AA, Xia JL, Liu HC, et al. Thiol-rich proteins play important role in adhesion and sulfur oxidation process of Acidithiobacillus ferroxidans[J] . Advanced Materials Research, 2013, 825:137-140. [23] Weissgerber T, Watanabe M, Hoefgen R, et al. Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate[J] . Metabolomics, 2014, 10(6):1094-1112.
|