Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (6): 104-111.doi: 10.13560/j.cnki.biotech.bull.1985.2016-1142
Previous Articles Next Articles
WU Li-ye, WANG Guo-liang, LIU Wen-de
Received:
2016-12-19
Online:
2017-06-26
Published:
2017-06-19
WU Li-ye, WANG Guo-liang, LIU Wen-de. Expression Analysis of Protein Arginine Methyltransferase Genes in Magnaporthe oryzae[J]. Biotechnology Bulletin, 2017, 33(6): 104-111.
[1] Valent B, Chumley FG. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea[J]. Annual Review of Phytopathology, 1991, 29(29):443-467. [2] Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434(7036):980-986. [3] Petrossian TC, Clarke SG. Uncovering the human methyltransfera-some[J]. Molecular & Cellular Proteomics Mcp, 2010, 10(1):M110. 000976. [4] Richon VM, Johnston D, Sneeringer CJ, et al. Chemogenetic analysis of human protein methyltransferases[J]. Chemical Biology & Drug Design, 2011, 78(2):199-210. [5] Branscombe TL, Frankel A, Lee JH, et al. PRMT5(Janus kinase-binding protein 1)catalyzes the formation of symmetric dimethylarginine residues in proteins[J]. Journal of Biological Chemistry, 2001, 276(35):32971-32976. [6] Yang Y, Hadjikyriacou A, Xia Z, et al. PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145[J]. Nature Communications, 2015, 6:6428. [7] Zurita-Lopez CI, Sandberg T, Kelly R, et al. Human protein arginine methyltransferase 7(PRMT7)is a type III enzyme forming ω-NG-monomethylated arginine residues[J]. Journal of Biological Chemistry, 2012, 287(11):7859-7870. [8] Lorenzo AD, Bedford MT. Histone arginine methylation[J]. Febs Letters, 2011, 585(13):2024-2031. [9] Yang Y, Bedford MT. Protein arginine methyltransferases and cancer[J]. Nature Reviews Cancer, 2012, 13(1):37-50. [10] Swiercz R, Cheng D, Kim D, et al. Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice[J]. Journal of Biological Chemistry, 2007, 282(23):16917-16923. [11] Bedford MT, Clarke SG. Protein arginine methylation in mammals:who, what, and why[J]. Molecular Cell, 2009, 33(1):1-13. [12] Hong H, Kao C, Jeng MH, et al. Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status[J]. Cancer, 2004, 101(1):83-89. [13] Cheng D, Yadav N, King RW, et al. Small molecule regulators of protein arginine methyltransferases[J]. Journal of Biological Chemistry, 2004, 279(23):23892-23899. [14] Pal S, Vishwanath SN, Erdjument-Bromage H, et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes[J]. Mol Cell Biol, 2004, 24(21):9630-9645. [15] Zhang L, Tran NT, Su H, et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing[J]. Elife Sciences, 2015, 4. pii:e07938. [16] Zhao DY, Gish G, Braunschweig U, et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination[J]. Nature, 2015, 529(7584):48-53. [17] Sayegh J, Clarke SG. Hsl7 is a substrate-specific type II protein arginine methyltransferase in yeast[J]. Biochemical & Biophysical Research Communications, 2008, 372(4):811-815. [18] Cimato TR, Tang J, Xu Y, et al. Nerve growth factor-mediated increases in protein methylation occur predominantly at type I argi-nine methylation sites and involve protein arginine methyltransfe-rase 1[J]. J Neurosci Res, 2002, 67(4):435-442. [19] Mcbride AE, Weiss VH, Kim HK, et al. Analysis of the yeast arginine methyltransferase Hmt1p/Rmt1p and its in vivo function. cofactor binding and substrate interactions[J]. Journal of Biological Chemistry, 2000, 275(5):3128-3136. [20] Zobel-Thropp P, Gary JD, Clarke S. Delta-N-Methylarginine is a novel posttranslational modification of arginine residues in yeast proteins[J]. J Biol Chem, 1998, 273(45):29283-29286. [21] Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function[J]. Molecular Cell, 2005, 18(3):263-272. [22] Boisvert F, Chénard CA, Richard S. Protein interfaces in signaling regulated by arginine methylation[J]. Sci STKE, 2005, 2005(271):re2. [23] Yu MC, Bachand F, Mcbride AE, et al. Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors[J]. Genes & Development, 2004, 18(16):2024-2035. [24] Shen EC, Henry MF, Weiss VH, et al. Arginine methylation facilitates the nuclear export of hnRNP proteins[J]. Genes & Development, 1998, 12(5):679-691. [25] Hang R, Liu C, Ahmad A, et al. Arabidopsis protein arginine methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal RNA processing[J]. Proceedings of the National Academy of Sciences, 2014, 111(45):16190-16195. [26] Deng X, Dean C. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing[J]. Proc Natl Acad Sci, 2010, 107(44):19114-19119. [27] Niu L, Lu F, Pei Y, et al. Regulation of flowering time by the protein arginine methyltransferase AtPRMT10[J]. Embo Reports, 2007, 8(12):1190-1195. [28] Wang G, Wang C, Hou R, et al. The AMT1 arginine methyltransfe-rase gene is important for plant infection and normal hyphal growth in Fusarium graminearum[J]. PLoS One, 2012, 7(5):e38324. [29] Bauer I, Graessle S, Loioll P, et al. Novel insights into the functio-nal role of three protein arginine methyltransferases in Aspergillus nidulans[J]. Fungal Genet Biol, 2010, 47:551-561. [30] Satterlee T, Cary JW, Calvo AM. RmtA, a putative arginine methyl-transferase, regulates secondary metabolism and development in Aspergillus flavus[J]. PLoS One, 2016, 11:e0155575. [31] Mcbride AE, Zuritalopez C, Regis A, et al. Protein arginine methylation in Candida albicans:role in nuclear transport[J]. Eukaryotic Cell, 2007, 6:1119-1129. [32] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method[J]. Methods, 2001, 25(4):402-408. [33] Bachand F. Protein arginine methyltransferases:from unicellular eukaryotes to humans[J]. Eukaryotic Cell, 2007, 6:889-898. [34] Green DM, Marfatia KA, Crafton EB, et al. Nab2p is required for poly(A)RNA export in Saccharomyces cerevisiae and is regulated by arginine methylation via Hmt1p[J]. Journal of Biological Chemistry, 2002, 277(10):7752-7760. [35] Kessler MM, Henry MF, Shen E, et al. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3'-end formation in yeast[J]. Genes & Development, 1997, 11(19):2545-2556. [36] González CI, Ruiz-Echevarría MJ, Vasudevan S, et al. The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay[J]. Mol Cell, 2000, 5(3):489-499. [37] Gross S, Moore CL. Rna15 interaction with the a-rich yeast polyadenylation signal is an essential step in mRNA 3'-end formation[J]. Mol Cell Biol, 2002, 21(23):8045-8055. [38] Hector RE, Nykamp KR, Dheur S, et al. Dual requirement for yeast hnRNP Nab2p in mRNA poly(A)tail length control and nuclear export[J]. Embo Journal, 2002, 21(7):1800-1810. [39] Wong CM, Tang HMV, Kong KYE, et al. Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p[J]. Nucleic Acids Research, 2010, 38(7):2217-2228. [40] Chern MK, Chang KN, Liu LF, et al. Yeast ribosomal protein L12 is a substrate of protein-arginine methyltransferase 2[J]. Journal of Biological Chemistry, 2002, 277(18):15345-15353. [41] Kucharczyk R, Gromadka R, Migdalski A, et al. Disruption of six novel yeast genes located on chromosome II reveals one gene essential for vegetative growth and two required for sporulation and conferring hypersensitivity to various chemicals[J]. Yeast, 1999, 15(10B):987-1000. [42] Howard RJ, Bourett TM, Ferrari MA. Infection by magnaporthe:an in vitro analysis[M]. Electron Microscopy of Plant Pathogens, 1991:251-264. [43] Heath MC, Valent B, Howard RJ, et al. Correlations between cytologically detected plant-fungal interactions and pathogenicity of Magnaporthe grisea toward weeping lovegrass[J]. Phytopathology, 1990, 80(12):1382-1386. [44] Heath MC, Valent B, Howard RJ, et al. Interactions of two strains of Magnaporthe grisea with rice, goosegrass, and weeping lovegrass[J]. Can J Bot, 2011, 68(8):1627-1637. |
[1] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[4] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[5] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[6] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[7] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[8] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[9] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[10] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
[11] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
[12] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[13] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
[14] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[15] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||