[1] Tang YT, Rosenberg JN, Bohutskyi P, et al. Microalgae as a feedstock for biofuel precursors and value-added products:green fuels and golden opportunities[J] . BioResources, 2016, 11:36. [2] Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae[J] . Journal of Bioscience and Bioengineering, 2006, 101:87-96. [3] Sibi G, Shetty V, Mokashi K. Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels-A review[J] . J Energy Inst, 2016, 89:330-334. [4] Minhas AK, Hodgson P, Barrow CJ, et al. A Review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids[J] . Front Microbiol, 2016, 7:19. [5] Rao AR, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents[J] . Bioresource Technology, 2007, 98:560-564. [6] Fazeli MR, Tofighi H, Samadi N, et al. Effects of salinity on beta-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran[J] . Bioresource Technology, 2006, 97:2453-2456. [7] Kim BH, Ramanan R, Kang Z, et al. Chlorella sorokiniana HS1, a novel freshwater green algal strain, grows and hyperaccumulates lipid droplets in seawater salinity[J] . Biomass Bioenerg, 2016, 85:300-305. [8] Paliwal C, Pancha I, Ghosh T, et al. Selective carotenoid accumula-tion by varying nutrient media and salinity in Synechocystis sp. CCNM 2501[J] . Bioresource Technology, 2015, 197:363-368. [9] 刘建国, 龙元薷, 黄园, 等. 微藻生物柴油研究现状与发展策略[J] . 海洋科学, 2013, 37(10):132-141. [10] 孙丽英, 何皓, 田宜水, 等. 微藻规模化生产的关键问题[J] . 可再生能源, 2012, 30(9):70-74. [11] 吴伯堂, 何汝洪, 彭云辉. 钝顶螺旋藻海水驯化的初步研究[J] . 海洋与湖沼, 1988, 19(2):197-200. [12] 向文洲, 李涛, 吴华莲, 等. 海水螺旋藻产业发展战略研究[J] . 广西科学, 2014(6):573-579. [13] Chen H, Jiang JG. Osmotic responses of Dunaliella to the changes of salinity[J] . Journal of Cellular Physiology, 2009, 219:251-258. [14] Li T, Wan LL, Li AF, et al. Responses in growth, lipid accumula-tion, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations[J] . Chin J Oceanol Limnol, 2013, 31:1306-1314. [15] Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J] . Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2005, 1738:63-71. [16] Christie WW. Lipid analysis:isolation, separation, identification, and structural analysis of lipids[M] :Pergamon Press, 1982. [17] Li T, Xu J, Gao B, et al. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris(Trebouxiophyceae)under low and high nitrogen supplies[J] . Algal Res, 2016, 16:481-491. [18] Lichtenthaler HK. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[M] . Method Enzymol:Academic Press, 1987:350-382. [19] Grima EM, Belarbi EH, Fernandez FGA, et al. Recovery of microalgal biomass and metabolites:process options and economics[J] . Biotechnology Advances, 2003, 20:491-515. [20] von Alvensleben N, Magnusson M, Heimann K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles[J] . Journal of Applied Phycology, 2016, 28:861-876. [21] Oren A. Bioenergetic aspects of halophilism[J] . Microbiology and Molecular Biology Reviews, 1999, 63:334-348. [22] 麦康森. 水产饲料的蛋白源问题[J] . 科学养鱼, 2014, 6:4. [23] 苏小凤, 邵庆均. 多不饱和脂肪酸在鱼类营养与饲料中的作用及其氧化稳定性[J] . 饲料研究, 2002, 3:11-14. [24] Dufosse L, Galaup P, Yaron A, et al. Microorganisms and microal-gae as sources of pigments for food use:a scientific oddity or an industrial reality?[J] . Trends in Food Science and Technology, 2005, 16(9):389-406. [25] Lyon BR, Bennett-Mintz JM, Lee PA, et al. Role of dimethylsulfoni-opropionate as an osmoprotectant following gradual salinity shifts in the sea-ice diatom Fragilariopsis cylindrus[J] . Environ Chem, 2016, 13:181-194. [26] Scholz B, Liebezeit G. Compatible solutes in three marine intertidal microphytobenthic Wadden Sea diatoms exposed to different salinities[J] . European Journal of Phycology, 2012, 47:393-407. [27] Talebi AF, Tabatabaei M, Mohtashami SK, et al. Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae[J] . Notulae Scientia Biologicae, 2013, 5:309. [28] 毕永红, 邓中洋, 胡征宇, 等. 发状念珠藻对盐胁迫的响应[J] . 水生生物学报, 2005, 29(2):125-129 [29] 毛桂莲, 许兴, 徐兆桢. 植物耐盐生理生化研究进展[J] . 中国生态农业学报, 2004, 12(1):43-46. [30] Sarada R, Tripathi U, Ravishankar GA. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions[J] . Process Biochem, 2002, 37:623-627. [31] Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae:a multifunctional response to stress[J] . Photosynthesis Research, 2010, 106:155-177. |