Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (1): 67-78.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0735
Previous Articles Next Articles
JIA Rong1,3, SU Feng-tao2, HU Bu-rong1
Received:
2017-09-07
Online:
2018-01-26
Published:
2018-01-22
JIA Rong, SU Feng-tao, HU Bu-rong. The Biological Effects Induced by Heavy Ion Radiation and Its Application in Life Science[J]. Biotechnology Bulletin, 2018, 34(1): 67-78.
[1] 王同权, 沈永平, 王尚武, 等. 空间辐射环境中的辐射效应[J]. 国防科技大学学报, 1999, 21(4):36-39. [2] 葛本伟, 郭世先, 葛淼. 地球磁场与人体健康[J]. 国外医学(医学地理分册), 2005, 26(1):39-42. [3] Blaisdell JO, Harrison L, Wallace SS. Base excision repair processing of radiation-induced clustered DNA lesions[J]. Radiation Protection Dosimetry, 2001, 97(1):25-31. [4] Goodhead DT, Thacker J, Cox R. Effects of radiations of different qualities on cells:molecular mechanisms of damage and repair[J]. Int J Radiat Biol, 1993, 63(5):543-556. [5] Dianov GL, O’Neill P, Goodhead DT. Securing genome stability by orchestrating DNA repair:removal of radiation-induced clustered lesions in DNA[J]. Bioessays, 2001, 23(8):745-749. [6] Brenner DJ, Ward JF. Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks[J]. Int J Radiat Biol, 1992, 61(6):737-748. [7] Okayasu R, Okada M, Okabe A, et al. Repair of DNA damage induced by accelerated heavy ions in mammalian cells proficient and deficient in the non-homologous end-joining pathway[J]. Radiation Research, 2006, 165(1):59-67. [8] Hamada N, Imaoka T, Masunaga S, et al. Recent advances in the biology of heavy-ion cancer therapy[J]. J Radiat Res, 2010, 51(4):365-383. [9] Heilmann J, Rink H, Taucher-scholz G, et al. DNA strand break induction and rejoining and cellular recovery in mammalian cells after heavy-ion irradiation[J]. Radiat Res, 1993, 135(1):46-55. [10] Tokuyama Y, Furusawa Y, Ideh, et al. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation[J]. J Radiat Res, 2015, 56(3):446-455. [11] Werner E, Wang Y, Doetsch PW. A single exposure to low-or high- LET radiation induces persistent genomic damage in mouse epithe-lial cells in vitro and in lung tissue[J]. Radiation Research, 2017. Doi: doi:10. 1667/RR14685. 1. [12] Asaithamby A, Uematsu N, Chatterjee A, et al. Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts[J]. Radiat Res, 2008, 169(4):437-446. [13] Lorat Y, Timm S, Jakob B, et al. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation[J]. Radiother Oncol, 2016, 121(1):154-161. [14] Taucher-scholz G, Heilmann J, Kraft G. Induction and rejoining of DNA double-strand breaks in CHO cells after heavy ion irradiation[J]. Adv Space Res, 1996, 18(1-2):83-92. [15] Tucker JD, Marples B, Ramsey MJ, et al. Persistence of chromosome aberrations in mice acutely exposed to 56 Fe +26 ions[J]. Radiation Research, 2004, 161(6):648-655. [16] Oike T, Niimi A, Okonogi N, et al. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiothe-rapy[J]. Scientific Reports, 2016, 6:22275. Doi: doi:10. 1038/ srep22275. [17] Ritter S, Durante M. Durante M:Heavy-ion induced chromosomal aberrations:a review[J]. Mutation Research, 2010, 701(1):38-46. [18] Schipler A, Mladenova V, Soni A, et al. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment[J]. Nucleic Acids Research, 2016, 44(16):7673-7690. [19] Asaithamby A, Hu B, Chen DJ. Unrepaired clustered DNA lesions induce chromosome breakage in human cells[J]. Proc Natl Acad Sci of the USA, 2011, 108(20):8293-8298. [20] Sutherland BM, Cuomo NC, Bennett PV. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures[J]. Radiation Research, 2005, 164(4):493-496. [21] Urushibara A. JAEA R&D Review, 2007, 71. (http://jolisfukyu. tokai-sc. jaea. go. jp/fukyu/mirai-en/2007/index_set. html) [22] Shikazono N. JAEA R&D Review, 2008, 71(http://jolisfukyu. tokai-sc. jaea. go. jp/fukyu/mirai-en/2008/index_set. html) [23] David-cordonnier MH, Cunniffe SM, Hickson ID, et al. Efficiency of incision of an AP site within clustered DNA damage by the major human AP endonuclease[J]. Biochemistry, 2002, 41(2):634-642. [24] Gulston M, Fulford J, Jenner T, et al. Clustered DNA damage induced by gamma radiation in human fibroblasts(HF19), hamster(V79-4)cells and plasmid DNA is revealed as Fpg and Nth sensitive sites[J]. Nucleic Acids Research, 2002, 30(15):3464-3472. [25] Lomax ME, Salje H, Cunniffe S, et al. 8-OxoA inhibits the incision of an AP site by the DNA glycosylases Fpg, Nth and the AP endonuclease HAP1[J]. Radiation Research, 2005, 163(1):79-84. [26] Gulston M, Delara C, Jenner T, et al. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation[J]. Nucleic Acids Research, 2004, 32(4):1602-1609. [27] Blaisdell JO, Wallace SS. Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli[J]. Proc Natl Acad Sci USA, 2001, 98(13):7426-7430. [28] D’Souza DI, Harrison L. Repair of clustered uracil DNA damages in Escherichia coli[J]. Nucleic Acids Research, 2003, 31(15):4573-4581. [29] Harrison L, Brame KL, Geltz LE, et al. Closely opposed apurinic/apyrimidinic sites are converted to double strand breaks in Escherichia coli even in the absence of exonuclease III, endonuclease IV, nucleotide excision repair and AP lyase cleavage[J]. DNA Repair, 2006, 5(3):324-335. [30] Malyarchuk S, Castore R, Harrison L. DNA repair of clustered lesions in mammalian cells:involvement of non-homologous end-joining[J]. Nucleic Acids Research, 2008, 36(15):4872-4882. [31] Fujimoto H, Pinak M, Nemoto T, et al. Molecular dynamics simulation of clustered DNA damage sites containing 8-oxoguanine and abasic site[J]. J Comput Chem, 2005, 26(8):788-798. [32] Sedelnikova OA, Redon CE, Dickey JS, et al. Role of oxidatively induced DNA lesions in human pathogenesis[J]. Mutation Research, 2010, 704(1-3):152-159. [33] Haines JW, Coster M, Bouffler SD. Impairment of the non-homologous end joining and homologous recombination pathways of DNA double strand break repair:Impact on spontaneous and radiation-induced mammary and intestinal tumour risk in Apc min/+ mice[J]. DNA Repair, 2015, 35:19-26. [34] Jackson SP. Sensing and repairing DNA double-strand breaks [J]. Carcinogenesis, 2002, 23(5):687-696. [35] Wu X, Petrini JH, Heine WF, et al. Independence of R/M/N focus formation and the presence of intact BRCA1[J]. Science, 2000, 289(5476):11. [36] Cousineau I, Abaji C, Belmaaza A. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage:implications for sister chromatid cohesion, genome stability, and carcinogenesis[J]. Cancer Res, 2005, 65(24):11384-11391. [37] Fang S, Weissman AM. A field guide to ubiquitylation[J]. Cell Mol Life Sci, 2004, 61(13):1546-1561. [38] Jeggo PA. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells[J]. Radiat Res, 1998, 150(5):S80-91. [39] Rothkamm K, Kruger I, Thompson LH, et al. Pathways of DNA double-strand break repair during the mammalian cell cycle[J]. Mol Cell Biol, 2003, 23(16):5706-5715. [40] Nagasawa H, Little JB, Inkret WC, et al. Response of X-ray-sensitive CHO mutant cells(xrs-6c)to radiation. II. Relationship between cell survival and the induction of chromosomal damage with low doses of alpha particles[J]. Radiat Res, 1991, 126(3):280-288. [41] Wang HY, Wang X, Zhang PY, et al. The Ku-dependent non-homologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation[J]. DNA Repair, 2008, 7(5):725-733. [42] Wang JH, Pluth JM, Cooper PK, et al. Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression[J]. DNA Repair, 2005, 4(5):556-570. [43] Symington LS, Gautier J. Double-strand break end resection and repair pathway choice[J]. Annual Review of Genetics, 2011, 45:247-271. [44] Couedel C, Mills KD, Barchi M, et al. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells[J]. Genes Dev, 2004, 18(11):1293-1304. [45] Kass EM, Jasin M. Collaboration and competition between DNA double-strand break repair pathways[J]. Febs Letters, 2010, 584(17):3703-3708. [46] Shrivastav M, De haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice[J]. Cell Res, 2008, 18(1):134-147. [47] You ZS, Bailis JM. CtIP coordinates DNA repair and cell cycle checkpoints[J]. Trends Cell Biol, 2010, 20(7):402-409. [48] Allen C, Kurimasa A, Brenneman MA, et al. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination[J]. Proc Natl Acad Sci USA, 2002, 99(6):3758-3763. [49] Pierce AJ, Hu P, Han MG, et al. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells[J]. Genes Dev, 2001, 15(24):3237-3242. [50] Zafar F, Seidler SB, Kronenberg A, et al. Homologous recombina-tion contributes to the repair of DNA double-strand breaks induced by high-energy iron ions[J]. Radiat Res, 2010, 173(1):27-39. [51] Gerelchuluun A, Manabe E, Ishikawa T, et al. The major DNA repair pathway after both proton and carbon-Ion radiation is NHEJ, but the HR pathway is more relevant in carbon ions[J]. Radiat Res, 2015, 183(3):345-356. [52] Hammet A, Pike BL, Mcnees CJ, et al. FHA domains as phospho-threonine binding modules in cell signaling[J]. Iubmb Life, 2003, 55(1):23-27. [53] Durant ST, Nickoloff JA. Good timing in the cell cycle for precise DNA repair by BRCA1[J]. Cell Cycle, 2005, 4(9):1216-1222. [54] Deng CX. BRCA1:cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution[J]. Nucleic Acids Res, 2006, 34(5):1416-1426. [55] Yan ZJ, Guo R, Paramasivam M, et al. A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network[J]. Mol Cell, 2012, 47(1):61-75. [56] Cao L, Xu X, Bunting SF, et al. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency[J]. Mol Cell, 2009, 35(4):534-541. [57] Wang B, Matsuoka S, Carpenter PB, et al. 53BP1, a mediator of the DNA damage checkpoint[J]. Science, 2002, 298(5597):1435-1438. [58] Schultz LB, Chehab NH, MalikzaYA, et al. p53 binding protein 1(53BP1)is an early participant in the cellular response to DNA double-strand breaks[J]. J Cell Biol, 2000, 151(7):1381-1390. [59] 李仁民, 王菊芳, 李文建. 重离子束在微生物诱变育种及生物能源开发中的应用[J]. 原子核物理评论, 2007, 24(3):234-237. [60] Okamura M, Yasuno N, Ohtsuka M, et al. Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiatedwith ion beams[J]. Nucl Instrum Methods B, 2003, 206:574-578. [61] Yamaguchi H, Nagatomi S, Morishita T, et al. Mutation induced with ion beam irradiation in rose[J]. Nucl Instrum Methods B, 2003, 206:561-564. [62] Kikuchi S, Saito Y, Ryuto H, et al. Effects of heavy-ion beams on chromosomes of common wheat, Triticum aestivum[J]. Mutat Res, 2009, 669(1-2):63-66. [63] Li Q, Wei ZQ, Li WJ. Calculation of depth-dose distribution of intermediate energy heavy-ion beams[J]. Chinese Science Bulletin, 2002, 47(20):1708-1710. [64] 余增亮, 何建军, 邓建国, 等. 离子注入水稻诱变育种机理初探[J]. 安徽农业科学, 1989(1):12-16. [65] 郭高, 钱坤. 安徽省农科院育成世界上第一个离子束小麦新品种[J]. 安徽农业. l998, 25(5):4. [66] 卫增泉, 颉红梅, 梁剑平, 等. 重离子束在诱变育种和分子改造中的应用[J]. 原子核物理评论, 2003, 20(1):38-41. [67] 赵连芝, 壬勇, 甄东牛, 等. 春小麦突变新品种-“陇辐2号”[J]. 核农学报, 2005, 19(1):80. [68] 董喜存, 李文建, 何金玉, 等. 碳离子束辐照对甜高粱主要性状的影响[J]. 核技术, 2009, 32(2):146-149. [69] He JY. Pigment analysis of a color-leaf mutant in Wandering Jew(Tradescantia fluminensis)irradiated by carbon ions[J]. Nuclear Science and Techniques, 2011, 22(2):77-83. [70] Wu DL, Hou SW, Qian PP, et al. Flower color chimera and abnormal leaf mutants induced by 12 C 6+ heavy ions in Salvia splendens Ker-Gawl[J]. Sci Hortic, 2009, 121(4):462-467. [71] Yu LX, Li WJ, Du Y, et al. Flower color mutants induced by carbon ion beam irradiation of geranium(Pelargonium× hortorum, Bailey)[J]. Nuclear Science & Techniques, 2016, 27(5):112-120. [72] 周利斌, 李文建, 曲颖, 等. 重离子束辐照育种研究进展及发展趋势[J]. 原子核物理评论, 2008, 25(2):165-170. [73] Luo SW, Zhou B, Li WJ, et al. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds[J]. Nuclear Instruments & Methods in Physics Research Section B-beam Interactions with Materials and Atoms, 2016, 383(15):123-128. [74] Abe T, Matsuyana T, Shigeko S, et al. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation[J]. J Radiat Res, 2002, 43(4):S157-S161. [75] Phanchaisri B, Samsang N, Yu LD, et al. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants[J]. Mut Res, 2012, 734(1-2):56-61. [76] Tanaka A, Tano S, Chantes T, et al. A new Arabidopsis mutant induced by ion beams affects flavonoid synthesis with spotted pigmentation in testa[J]. Genes Genet Syst, 1997, 3(3):141-148. [77] Okamura M, Hase Y, Furusawa Y, et al. Tissue-dependent somaclonal mutation frequencies and spectra enhanced by ion beam irradiation in chrysanthemum[J]. Euphytica, 2015, 202(3):333-343. [78] Ishii K, Kazama Y, Morita R, et al. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation[J]. PLoS One, 2016, 11(7):e0160061. [79] 都雯玥. 重离子辐照并筛选截短侧耳素高产菌株的研究[D]. 兰州:兰州理工大学, 2016:1-59. [80] 颉红梅, 卫增泉, 李文建. 7 MeV/u O 6+ 离子对庆大霉素生产菌诱变的初步研究[J]. 辐射研究与辐射工艺学报, 1995, 13(2):99-101. [81] 王曙阳, 薄永恒, 王丽华, 等. 12 C 6+ 离子辐照对阿维链霉菌代谢效应研究[J]. 原子核物理评论, 2013, 30(2):195-200. [82] Li SW, Li M, Song HP, et al. Induction of a high-yield lovastatin mutant of Aspergillus terreus by 12 C 6+ heavy-ion beam irradiation and the influence of culture conditions on lovastatin production under submerged fermentation[J]. Applied Biochemistry and Biotechnology, 2011, 165(3):913-925. [83] Wang SY, Bo YH, Zhou X, et al. Significance of heavy-ion beam irradiation-induced avermectin b1a production by engineered streptomyces avermitilis[J]. Biomed Res Int, 2017, 2017:5373262. Doi: doi:10. 1155/2017/5373262. [84] 胡伟, 陈积红, 张珍, 等. 重离子辐照柠檬酸菌株的诱变选育[J]. 辐射研究与辐射工艺学报, 2012, 30(1):53-57. [85] 严亚平, 王菊芳, 陆栋, 等. C离子束诱变产生甜高粱汁酒精酵母高产菌株的研究[J]. 原子核物理评论, 2009, 26(3):269-273. [86] Hu W, Chen JH, Li WJ, et al. Mutant breeding of Aspergillus niger irradiated by 12 C 6+ for hyper citric acid[J]. Nuclear Science and Techniques, 2014, 25(2):1-4. [87] 王雨辰, 王曙阳, 董妙音, 等. 重离子束辐照选育高产植物乳酸菌[J]. 辐射研究与辐射工艺学报, 2017, 35(1):50-56. [88] 李垄清, 马良, 李文建. 12 C 6+ 辐照环境下酵母高产β-葡聚糖菌株筛选及条件优化研究[J]. 食品科技, 2017, 42(3):2-6. [89] 薛林贵, 赵旭, 常思静, 等. 80 MeV/u C -12 离子诱变选育 PHB 高产菌株[J]. 核技术, 2010, 33(4):284-288. [90] Hu GR, Fan Y, Zhang L, et al. Enhanced lipid productivity and photosynthesis effi ciency in a Desmodesmus sp. mutant induced by heavy carbon ions[J]. PLoS One, 2013, 8(4):e60700. [91] 王芝瑶, 马玉彬, 牟润芝, 等. 重离子诱变创制高产油微拟球藻新品种[J]. 生物工程学报, 2013, 29(1):119-122. [92] Wang JF, Li RM, Lu D, et al. A quick isolation method for mutants with high lipid yield in oleaginous yeast[J]. World Journal of Microbiology and Biotechnology, 2009, 25(5):921-925. [93] Zhou X, Lu XH, Li XH, et al. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch[J]. Biotechnology for Biofuels, 2014, 7:22. [94] Suit H, Urie M. Proton beams in radiation therapy[J]. Journal of the National Cancer Institute, 1992, 84(3):155-164. [95] Linstadt DE, Castro JR, Phillips TL. Neon ion radiotherapy:results of the phase I/II clinical trial[J]. International Journal of Radiation Oncology Biology Physics, 1991, 20(4):761-769. [96] Castro JR. Results of Heavy-Ion Radiotherapy[J]. Radiat Environ Bioph, 1995, 34(1):45-48. [97] Combs SE, Jakel O, Haberer T, et al. Particle therapy at the heidelberg ion therapy center(HIT)- integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany[J]. Radiother Oncol, 2010, 95(1):41-44. [98] Sawada K, Sawada J, Sakata T, et al. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center[J]. Rev Sci Instrum, 2000, 71(2):987-989. [99] 辻进博彦. 日本重离子治疗临床研究[C]. 兰州:第二届全国重离子治疗高端论坛, 2016. 12. 27. [100] 王小虎. 国产碳离子治癌设备应用进展[C]. 兰州:第二届全国重离子治疗高端论坛, 2016. 12. 27. [101] Tsujii H, Kamada T. A review of update clinical results of carbon ion radiotherapy[J]. Jpn J Clin Oncol, 2012, 42(8):670-685. [102] Kitagawa A, Fujita T, Muramatsu M, et al. Review on heavy ion radiotherapy facilities and related ion sources(invited)[J]. Rev Sci Instrum, 2010, 81(2):02B909. [103] Sunada S, Cartwright IM, Hirakawa H, et al. Investigation of the relative biological effectiveness and uniform isobiological killing effects of irradiation with a clinical carbon SOBP beam on DNA repair deficient CHO cells[J]. Oncol Lett, 2017, 13(6):4911-4916. [104] Hada M, Sutherland BM. Spectrum of complex DNA damages depends on the incident radiation[J]. Radiation Research, 2006, 165(2):223-230. [105] Sunada S, Hirakawa H, Fujimori A, et al. Oxygen Enhancement ratio in radiation-induced initial DSBs by an optimized flow cytometry-based gamma-H2AX analysis in A549 human cancer cells[J]. Radiat Res, 2017, 188(5):591-594. [106] Cui X, Oonishi K, Tsujii H, et al. Effects of carbon ion beam on putative colon cancer stem cells and its comparison with X-rays[J]. Cancer Research, 2011, 71(10):3676-3687. [107] Osama M, Brock JS, Janapriya S, et al. Carbon ion radiotherapy:a review of clinical experiences and preclinical research, with an emphasis on DNA damage/repair[J]. Cancers(Basel), 2017, 9(6). pii:E66. Doi: doi:10. 3390/cancers9060066. [108] Kuscu C, Parlak M, Tufan T, et al. CRISPR-STOP:gene silencing through base-editing-induced nonsense mutations[J]. Nat Methods, 2017, 14(7):710-712. [109] Sattar MN, Iqbal Z, Tahir MN, et al. CRISPR/Cas9:A practical approach in date palm genome editing[J]. Front Plant Sci, 2017, 8:1469. [110] Huang JJ, Wang YF, Zhao JG. CRISPR editing in biological and biomedical investigation[J]. J Cell Physiol, 2017. doi:10. 1002/jcp. 26141. [111] Donohoue PD, Barrangou R, May AP. Advances in industrial biotechnology using CRISPR-Cas systems[J]. Trends Biotechnol, 2017, pii:S0167-7799(17)30187-7. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||