Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (1): 135-143.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0877
Previous Articles Next Articles
WEI Ming-ming, ZENG Xia, AN Ze-wei, HU Yan-shi, HUANG Xiao, LI Wei-guo
Received:
2019-09-20
Online:
2020-01-26
Published:
2020-01-08
WEI Ming-ming, ZENG Xia, AN Ze-wei, HU Yan-shi, HUANG Xiao, LI Wei-guo. Advances in the Maintenance and Termination of Floral Meristem Regulated by C-type Floral Organ Gene AGAMOUS(AG)[J]. Biotechnology Bulletin, 2020, 36(1): 135-143.
[1] Coen ES, Meyerowitz EM.The war of the whorls:genetic interactions controlling flower development[J]. Nature, 1991, 353(6339):31-37. [2] Theissen G, Becker A, Rosa AD, et al.A short history of MADS-box genes in plants[J]. Plant Mol Bio, 2000, 42(1):115-149. [3] Bo L, Li Q, Mao X, et al.Two novel AP2/EREBP transcription factor genes TaPARG have pleiotropic functions on plant architecture and yield-related traits in common wheat[J]. Front Plant Sci, 2016, 7(1191):1-13. [4] David RS.Evolution and genetic control of the floral ground plan[J]. New Phy, 2018, 220(1):70-86. [5] Li LY, Fang ZW, Li XF, et al.Isolation and characterization of the C-class MADS-box gene from the distylous pseudo-cereal Fagopyrum esculentum[J]. Plant Bio J, 2017, 60(2):189-198. [6] Dreni L, Zhang D.Flower development:the evolutionary history and functions of the AGL6 subfamily MADS-box genes[J]. J Exp Bot, 2016, 67(6):1625-1638. [7] Nakatsuka T, Saito M, Nishihara M.Functional characterization of duplicated B-class MADS-box genes in Japanese gentian[J]. Plant Cell Rep, 2016, 35(4):895-904. [8] Zeng X, Liu H, Du H, et al.Soybean MADS-box gene GmAGL1 promotes flowering via the photoperiod pathway[J]. BMC Genomics, 2018, 19(51):1-17. [9] Balanzà V, Martínezfernández I, Sato S, et al.Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway[J]. Nat Commun, 2018, 9(1):565. [10] Villarino GH, Hu Q, Manrique S, et al.Transcriptomic signature of the SHATTERPROOF2 expression domain reveals the meristematic nature of Arabidopsis gynoecial medial domain[J]. Plant Phy, 2016, 171(1):42-61. [11] Ferrandiz C, Gu Q, Martienssen R, et al.Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER[J]. Development, 2000, 127(4):725-734. [12] Pelaz S, Ditta GS, Baumann E, et al.B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405(6783):200-203. [13] Nesi N, Debeaujon I, Jond C, et al.The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat[J]. Plant Cell, 2002, 14(10):2463-2479. [14] Niu S, Yuan H, Sun X, et al.A transcriptomics investigation into pine reproductive organ development[J]. New Phy, 2016, 209(3):1278-1289. [15] Ó'Maoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development[J]. New Phy, 2014, 201(1):16-30. [16] Becker A.Tinkering with transcription factor networks for developmental robustness of Ranunculales flowers[J]. Ann Bot, 2016, 117(5):845-858. [17] Sun B, Ito T.Regulation of floral stem cell terminationin Arabidopsis[J]. Front Plant Sci, 2015, 6:17. [18] Yamaguchi N, Huang J, Xu Y, et al.Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation[J]. Nature Comm, 2017, 8(1):1-15. [19] Guo S, Sun B, Looi LS, et al.Coordination of flower development through epigenetic regulation in two model species:rice and Arabidopsis[J]. Plant Cell Phy, 2015, 56(5):830-842. [20] Sun B, Xu Y, Ng K, et al.A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev, 2009, 23, 1791-1804. [21] Bollier N, Sicard A, Leblond J, et al.At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and tomato[J]. Plant Cell, 2018, 30(1):83-100. [22] Hawkins C, Liu Z.A model for an early role of auxin in Arabidopsis gynoecium morphogenesis[J]. Front Plant Sci, 2014, 5(327): 1-12. [23] Marsch-Martinez N, De Folter S.Hormonal control of the development of the gynoecium[J]. Curr Opin Plant Biol, 2016, 12(29):104-114. [24] Smyth DR, Bowman JL, Meyerowitz EM.Early flower development in Arabidopsis[J]. Plant Cell, 1990, 2(8):755-767. [25] Heidstra R, Sabatini S.Plant and animal stem cells:similar yet different[J]. Nat Rev Mol Cell Biol, 2014, 15(5):301-312. [26] Dreni L, Kater MM.MADS reloaded:evolution of the AGAMOUS subfamily genes[J]. New Phytol, 2014, 201:717-732. [27] Ito T, Ng KH, Lim TS, et al.The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis[J]. Plant Cell, 2007, 19(11):3516-3529. [28] Krizek B A, Prost V, Macias A.AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS[J]. The Plant Cell, 2000, 12(8):1357-1366. [29] Kramer EM, Jaramillo MA, Di Stilio VS.Patterns of gene duplication and functional evolution during the diversification of the agamous subfamily of MADS box genes in angiosperms[J]. Genetics, 2004, 166(2):1011-1023. [30] Li W, Hu W, Fang C, et al.An AGAMOUS intron-driven cytotoxin leads to flowerless tobacco and produces no detrimental effects on vegetative growth of either tobacco or poplar[J]. Plant Bio J, 2016, 14(12):2276-2287. [31] Liu X, Kim YJ, Müller R, et al.AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing wuschel through recruitment of polycomb group proteins[J]. Plant Cell, 2011, 23(10):3654-3670. [32] Dreni L, Pilatone A, Yun DP, et al.Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy[J]. Plant Cell, 2011, 23(8):2850-2863. [33] 田亚然, 范天刚, 张钢, 等. 低温引起月季花朵过度重瓣化关键基因的表达及分析[J]. 热带作物学报, 2016, 37(6):1147-1154. [34] Lu H, Klocko AL, Brunner AM, et al.RNA interference suppression of AGAMOUS and SEEDSTICK alters floral organ identity and impairs floral organ determinacy, ovule differentiation, and seed-hair development in Populus[J]. New Phytol, 2019, 222(2):923-937. [35] Xu W, Tao J, Chen M, et al.Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development[J]. J Exp Bot, 2017, 68(3):483-498. [36] Liu ZX, Xiong HY, Li LY, et al.Functional conservation of an AGAMOUS orthologous gene controlling reproductive organ development in the gymnosperm species Taxus chinensis var. mairei[J]. J Plant Bio, 2018, 61:50-59. [37] Ó'Maoiléidigh DS, Wuest SE, Rae L, et al. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS[J]. Plant Cell, 2013, 25(7):2482-2503. [38] Liu Y, Zhang D, Ping J, et al.Innovation of a regulatory mechanism modulating semi-determinate stem growth through artificial selection in soybean[J]. PLoS Genetics, 2016, 12(1):e100588. [39] Mayer K F X, Schoof H, Haecker A, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1998, 95(6):805-815. [40] Huang Z, Shi T, Zheng B, et al.APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana[J]. New Phy, 2017, 215(3):1197-1209. [41] Lenhard M, Bohnert A, Jürgens G, et al.Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS[J]. Cell, 2001, 105(6):805-814. [42] Lohmann JU, Hong RL, Hobe M, et al.A molecular link between stem cell regulation and floral patterning in Arabidopsis[J]. Cell, 2001, 105(6):793-803. [43] Payne T, Johnson SD, Koltunow AM.KNUCKLES(KNU)encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium[J]. Development, 2004, 131(15):3737-3749. [44] Sun B, Xu Y, Ng KH, et al.A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem[J]. Genes & Dev, 2009, 23(15):1791-1804. [45] Sun B, Looi LS, Guo S, et al.Timing mechanism dependent on cell division is invoked by polycomb eviction in plant stem cells[J]. Science, 2014, 343(6170):505-514. [46] Iwase A, Harashima H, Ikeuchi M, et al.WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[J]. Plant Cell, 2016, 29(1):54-69. [47] Jásik J, Bokor B, StuchlãKS, et al. Effects of Auxins on PIN-FORMED2(PIN2)dynamics are not mediated by inhibiting PIN2 endocytosis[J]. Plant Phy, 2016, 172(2):1019-1031. [48] Wang F, Muto A, Velde JVD, et al.Functional analysis of the Arabidopsis TETRASPANIN gene family in plant growth and development[J]. Plant Phys, 2015, 169(3):2200-2214. [49] Montes AC, Herrera-Ubaldo H, Serwatowska J, et al.Towards a comprehensive and dynamic gynoecium gene regulatory network[J]. Curr Plant Biol, 2015, 3(4):3-12. [50] Breuilbroyer S, Trehin C, Morel P, et al.Analysis of the Arabidopsis superman allelic series and the interactions with other genes demonstrate developmental robustness and joint specification of male-female boundary, flower meristem termination and carpel compart mentalization[J]. Ann Bot, 2016, 117(5):905-923. [51] Breuil-Broyer S, Trehin C, Morel P, et al.Analysis of the Arabidopsis superman allelic series and the interactions with other genes demonstrate developmental robustness and joint specification of male-female boundary, flower meristem termination and carpel compartmentalization[J]. Ann Bot, 2016, 117(5):905-923. [52] SilvaJ, Kim YJ, Xiao D, et al. Cytological analysis of ginseng carpel development[J]. Protoplasma, 2017, 254(5):1909-1922. [53] Staldal V, Sohlberg JJ, Eklund DM, et al.Auxin can act independently of CRC, LUG, SEU, SPT, STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium[J]. New Phytol, 2008, 180(4):798-808. [54] Rong XF, Sang YL, Wang L, et al.Type-B ARRs control carpel regeneration through mediating AGAMOUS expression in Arabidopsis[J]. Plant Cell Phy, 2018, 59(4):756-764. [55] Xiao J, Jin R, Yu X, et al.Cis and trans determinants of epigenetic silencing by polycomb repressive complex 2 in Arabidopsis[J]. Nature Genetics, 2017, 49(10):1546-1552. [56] Chanvivattana Y, Bishopp A, Schubert D, et al.Interaction of polycomb-group proteins controlling flowering in Arabidopsis[J]. Development, 2004, 131(21):5263-5276. [57] Molitor A, Shen WH.The polycomb complex PRC1:composition and function in plants[J]. Journal of Genetics and Genomics, 2013, 40(5):231-238. [58] Schubert D, Primavesi L, Bishopp A, et al.Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27[J]. EMBO J, 2006, 25(19):4638-4649. [59] Lodha M, Marco CF, Timmermans MC.The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of polycomb-repressive complex2[J]. Genes & Dev, 2013, 27(6):596-601. [60] Wu HW, Deng S, Xu H, et al.A noncoding RNA transcribed from the AGAMOUS(AG)second intron binds to CURLY LEAF and represses AG expression in leaves[J]. New Phy, 2018, 219(4):1480-1491. [61] Hu Y, Lai Y, Fan S, et al.Regulation of phytohormone biosynthesis genes by polycomb-mediated histone H3 lysine 27 trimethylation in Arabidopsis[J]. J Plant Sci, 2018, 6(4):117-133. [62] Liu J, Wang H, Chua NH.Long noncoding RNA transcriptome of plants[J]. Plant Bio J, 2015, 13(3):319-328. [63] Xu Y, Yamaguchi N, Gan ES, et al.When to stop:an update on molecular mechanisms of floral meristem termination[J]. J Exp Bot, 2019, 70(6):1711-1718. [64] Lehretz GG, Sonnewald S, Hornyik C, et al.Post-transcriptional regulation of Flowering locus T modulates heat-dependent source-sink development in potato[J]. Current Bio, 2019, 29(10):1614-1624. [65] Heo JB, Sung S.Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013):76-79. [66] Yan W, Chen D, Kaufmann K.Molecular mechanisms of floral organ specification by MADS domain proteins[J]. Curr Opin Plant Biol, 2016, 4(29):154-162. [67] Simonini S, Deb J, Moubayidin L, et al.A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis[J]. Genes & Dev, 2016, 30(20):2286-2296. [68] Liu X, Dinh TT, Li D, et al.AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy[J]. Plant J, 2014, 80(4):629-641. [69] Denay G, Chahtane H, Tichtinsky G, et al.A flower is born:an update on Arabidopsis floral meristem formation[J]. Curr Opin Plant Biol, 2017, 9(35):15-22. [70] Zhang K, Wang R, Zi H, et al.AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling[J]. The Plant Cell, 2018, 30(2):324-346. [71] Prunet N, Morel P, Champelovier P, et al.SQUINT promotes stem cell homeostasis and floral meristem termination in Arabidopsis through APETALA2 and CLAVATA signalling[J]. J Exp Bot, 2015, 66(21):6905-6916. [72] Vaddepalli P, Scholz S, Schneitz K.Pattern formation during early floral development[J]. Curr Opin Genet Dev, 2015, 32:16-23. [73] Chen DJ, Yan WH, Fu LY, et al.Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana[J]. Nature Comm, 2018, 9(1):4534. [74] Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, et al.Gynoecium development:networks in Arabidopsis and beyond[J]. J Exp Bot, 2019, 5(70):1447-1460. [75] Guo S, Sun B, Looi LS, et al.Co-ordination of flower development through epigenetic regulation in two model species:rice and Arabidopsis[J]. Plant & Cell Phy, 2015, 56(5):830-842. [76] Uemura A, Yamaguchi N, Xu Y, et al.Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis[J]. Plant Rep, 2018, 31(1):89-105. [77] Berger N, Dubreucq B, Roudier F, et al.Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27[J]. Plant Cell, 2011, 23(11):4065-4078. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||