Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 121-128.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0307
Previous Articles Next Articles
YANG Rui-jia1,2(), ZHANG Zhong-bao1(), WU Zhong-yi1()
Received:
2020-03-21
Online:
2020-12-26
Published:
2020-12-22
Contact:
ZHANG Zhong-bao,WU Zhong-yi
E-mail:yrj1225@126.com;zhangzhongbao@baafs.net.cn;wuzhongyi@baafs.net.cn
YANG Rui-jia, ZHANG Zhong-bao, WU Zhong-yi. Progress of the Structural and Functional Analysis of Plant Transcription Factor TIFY Protein Family[J]. Biotechnology Bulletin, 2020, 36(12): 121-128.
[1] |
Vanholme B, Grunewald W, Bateman A, et al. The tify family previously known as ZIM[J]. Trends in Plant Science, 2007,12:239-244.
doi: 10.1016/j.tplants.2007.04.004 URL pmid: 17499004 |
[2] |
Nishii A, Takemura M, Fujita H, et al. Characterization of a novel gene encoding a putative single Zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thaliana[J]. Bioscience, Biotechnology, and Biochemistry, 2000,64(7):1402-1409.
doi: 10.1271/bbb.64.1402 URL pmid: 10945256 |
[3] |
Ebel C, BenFeki A, Hanin M, et al. Characterization of wheat(Triti-cum aestivum)TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance[J]. PLoS One, 2018,13(7):e0200566.
URL pmid: 30021005 |
[4] |
Bai YH, Meng YJ, Huang DL, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011,98:128-136.
doi: 10.1016/j.ygeno.2011.05.002 URL pmid: 21616136 |
[5] |
Wang WJ, Liu GS, Niu HX, et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco(Nicotiana tabacum L. cv. TN90)[J]. Journal of Experimental Botany, 2014,65(8):2147-2160.
URL pmid: 24604735 |
[6] |
Grunewald W, Vanholme B, Pauwels L, et al. Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin[J]. EMBO Rep, 2009,10(8):923-928.
URL pmid: 19575013 |
[7] | 王跃. 杨树TIFY基因家族的鉴定和CRISPR/Cas9技术敲除PtWRKY36基因的研究[D]. 合肥:安徽农业大学, 2018. |
Wang Y. Identification of TIFY gene family in poplar and the PtWRKY36 gene deletion using the technique of CRISPR/Cas9 gene editing[D]. Hefei:Anhui Agricultural University, 2018. | |
[8] |
Ye HY, Du H, Tang N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009,71(3):291-305.
URL pmid: 19618278 |
[9] |
Zhang ZB, Li XL, Yu R, et al. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family[J]. Molecular Genetics and Genomics, 2015,290(5):1849-1858.
URL pmid: 25862669 |
[10] |
Zhang LH, You J, Chan ZL. Identification and characterization of TIFY family genes in Brachypodium distachyon[J]. Journal of Plant Research, 2015,128:995-1005.
doi: 10.1007/s10265-015-0755-2 URL pmid: 26423998 |
[11] | 胡利宗, 李超琼, 张雯露, 等. 菜豆TIFY基因的全基因组鉴定与系统进化分析[J]. 分子植物育种, 2020,18(10):3132-3140. |
Hu LZ, Li CQ, Zhang WL, et al. Genome-wide identification and phylogenetic analysis of the TIFY genes in common bean(Phase-olus vulgaris)[J]. Molecular Plant Breeding, 2020,18(10):3132-3140. | |
[12] | 黄英. 丹参TIFY基因家族分析及其互作蛋白筛选[D]. 西安:陕西师范大学, 2017. |
Huang Y. Analysis of the TIFY gene family and screening of its interacting proteins[D]. Xi'an:Shanxi Normal University, 2017. | |
[13] |
Chini A, Ben-Romdhane W, Hassairi A, et al. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses[J]. PLoS One, 2017,12(6):e0177381.
URL pmid: 28570564 |
[14] | 罗冬兰, 巴良杰, 陈建业, 等. 香蕉MaTIFY1转录因子特性及其在成熟过程中基因表达分析[J]. 园艺学报, 2017,44(1):43-52. |
Luo DL, Ba LJ, Chen JY, et al. Characterization and expression analysis of banana MaTIFY1 transcription factor during fruit ripening[J]. Bulletin of Horticulture, 2017,44(1):43-52. | |
[15] |
Zhu D, Bai X, Chen C, et al. GsTIFY10, a novel positive regulator of plant tolerance to bicarbonate stress and a repressor of jasmonate signaling[J]. Plant Molecular Biology, 2011,77(3):285-297.
URL pmid: 21805375 |
[16] | Sirhindi G, Sharma P, Arya P, et al. Genome-wide characterization and expression profiling of TIFY gene family in pigeonpea(Cajanus cajan(L.)Millsp)under copper stress[J]. Journal of Plant Biochemistry and Biotechnology, 2016,25(3):301-310. |
[17] | 赵晓晓. 柳枝稷幼穗分化分期与TIFY基因家族鉴定[D]. 杨凌:西北农林科技大学, 2019. |
Zhao XX. Dvide differentitation process of switchgrass spike into stages and identify TIFY gene family in switchgrass[D]. Yangling:Northwest A&F University of Science and Technology, 2019. | |
[18] |
Huang Z, Jin SH, Guo HD, et al. Genome-wide identification and characterization of TIFY family genes in Moso Bamboo(Phyllostachys edulis)and expression profiling analysis under dehydration and cold stresses[J]. PeerJ, 2016,4:e2620.
doi: 10.7717/peerj.2620 URL pmid: 27812419 |
[19] | Li XQ, Yin XJ, Wang H, et al. Genome-wide identification and analysis of the apple(Malus×domestica Borkh.)TIFY gene family[J]. Tree Genetics & Genomes, 2015,11(1):808. |
[20] |
Yang YX, Ahammed GJ, Wan CP, et al. Comprehensive analysis of TIFY transcription factors and their expression profiles under jasmonic acid and abiotic stresses in watermelon[J]. International Journal of Genomics, 2019. doi: 10. 1155/2019/6813086.
URL pmid: 32855960 |
[21] | Ma YJ, Shu SS, Bai SL, et al. Genome-wide survey and analysis of the TIFY, gene family and its potential role in anthocyanin synjournal in Chinese sand pear(Pyrus pyrifolia)[J]. Tree Genetics & Genomes, 2018,14(2):25. |
[22] |
Zhang YC, Gao M, Singer SD, et al. Genome-wide identification and analysis of the TIFY gene family in grape[J]. PLoS One, 2012,7(9):e44465.
URL pmid: 22984514 |
[23] | Kim Chang K, Han J, Lee J, et al. Gene encoding PnFL-2 with TIFY and CCT motifs may control floral induction in Pharbitis nil[J]. Genes & Genomics, 2011,33(3):229-236. |
[24] |
He DH, Lei ZP, Tang BS, et al. Identification and analysis of the TIFY gene family in Gossypium Raimondii[J]. Genetics and Molecular Research, 2015,14(3):10119-10138.
doi: 10.4238/2015.August.21.19 URL pmid: 26345949 |
[25] | Hakata M, Kuroda M, Ohsumi A, et al. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem[J]. Bioscience Biotechnology and Biochemistry, 2012,76(11):2129-2134. |
[26] |
White DWR. PEAPOD regulates lamina size and curvature in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006,103:13238-13243.
URL pmid: 16916932 |
[27] |
Baekelandt A, Pauwes L, Wang ZB, et al. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes[J]. Plant Physiology, 2018,178(1):217-232.
URL pmid: 29991485 |
[28] |
Shikata M, Matsuda Y, Ando K, et al. Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family[J]. Journal of Experimental Botany, 2004,55(397):631-639.
doi: 10.1093/jxb/erh078 URL |
[29] |
Yu XH, Chen GP, Tang BY, et al. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants[J]. Plant Science, 2018,267:65-73.
doi: 10.1016/j.plantsci.2017.11.008 URL |
[30] |
Li M, Zhang T, Ge SS, et al. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis[J]. Journal of Proteomics, 2019,196:81-91.
URL pmid: 30731210 |
[31] | Seo JS, Joo J, Kim MJ, et al. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant Journal, 2011,65(6):907-921. |
[32] | 朱丹, 柏锡, 朱延明, 等. 野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析[J]. 遗传, 2012,34(2):230-239. |
Zhu D, Bai X, Zhu YM, et al. Isolation and functional analysis of GsTIFY11b relevant to salt and alkaline stress from Glycine soja[J]. Hereditas, 2012,34(2):230-239. | |
[33] | 阎文飞, 程凡升, 姜新强, 等. 野大豆盐碱胁迫相关GsTIFY6B基因克隆及表达特性分析[J]. 华北农学报, 2018,33(4):82-89. |
Yan WF, Chen FS, Jiang XQ, et al. Cloning and expression analysis of GsTIFY6B associated with saline and alkali stress in Glycine soja[J]. North China Agricultural Bulletin, 2018,33(4):82-89. | |
[34] | Zhao CY, Pan XW, Yu Y, et al. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean[J]. Molecular Breeding:New Strategies in Plant Improvement, 2020,40(3):255-265. |
[35] | 孙程, 周晓今, 陈茹梅, 等. 植物JAZ蛋白的功能概述[J]. 生物技术通报, 2014(6):1-8. |
Sun C, Zhou XJ, Chen RM, et al. Comprehensive overview of JAZ proteins in plants[J]. Biotechnology Bulletin, 2014(6):1-8. | |
[36] | Wang YC, Xu HF, Liu WJ, et al. Methyl jasmonate enhances apple’ cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell Tissue & Organ Culture, 2018,136:78-89. |
[37] | Shen J, Zou Z, Xing H, et al. Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in camellia sinensis[J]. International Journal of Molecular Sciences, 2020,21(7):2433. |
[38] |
Zhou XJ, Yan SG, Sun C, et al. A Maize Jasmonate Zim-Domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis[J]. PLoS One, 2015,10(3):e0121824.
doi: 10.1371/journal.pone.0121824 URL pmid: 25807368 |
[39] |
Liu SH, Zhang PY, Li CC, et al. The moss jasmonate ZIM-domain protein PnJAZ1 confers salinity tolerance via crosstalk with the abscisic acid signaling pathway[J]. Plant Sci, 2019,280:1-11.
URL pmid: 30823987 |
[40] |
Xia XC, Hu QQ, Li W, et al. Cotton(Gossypium hirsutum)JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation[J]. Plant Cell, Tissue and Organ Culture, 2018,133(2):249-262.
doi: 10.1007/s11240-018-1378-9 URL |
[41] |
Um TY, Lee HY, Lee S, et al. Jasmonate ZIM-Domain protein 9 interacts with slender rice 1 to mediate the antagonistic interaction between jasmonic and gibberellic acid signals in rice[J]. Front Plant Sci, 2018,9:1866.
URL pmid: 30619427 |
[42] | Valenzuela-Riffo F, Paz E, Zúiga , Morales-Quintana L, et al. Priming of defense systems and upregulation of MYC2 and JAZ1 genes after botrytis cinerea inoculation in Methyl jasmonate-treated strawberry fruits[J]. Plants, 2020,9(4):447. |
[43] | Ju L, Jing YX, Shi PT, et al. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabid-opsis[J]. New Phytologist, 2019,223(1):246-260. |
[44] | Li YX, Xu M, Wang N, et al. A JAZ Protein in Astragalus sinicus interacts with a leghemoglobin through the TIFY domain and is involved in nodule development and nitrogen fixation[J]. PLoS One, 2015,10(10):e0139964. |
[45] |
Pei TL, Ma PD, Ding K, et al. SmJAZ8 acts as a core repressor regulating JA-induced biosynjournal of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots[J]. Journal of Experimental Botany, 2017,69(7):1663-1678.
URL pmid: 29281115 |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[5] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[8] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[9] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[10] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[11] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[12] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[13] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[14] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[15] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||