Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 1-8.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0072
FANG Dan-dan1(), ZHANG Ting2, WEN Xiao-peng1()
Received:
2021-01-18
Online:
2021-10-26
Published:
2021-11-12
Contact:
WEN Xiao-peng
E-mail:1787825136@qq.com;xpwensc@hotmail.com
FANG Dan-dan, ZHANG Ting, WEN Xiao-peng. Overexpression of Pinus massoniana PmPT3 Gene in Arabidopsis thaliana Increasing Low Phosphorus Tolerance[J]. Biotechnology Bulletin, 2021, 37(10): 1-8.
引物Primer | 序列Sequence(5'-3') | 退火温度Annealing temperature/℃ |
---|---|---|
PmPT3-F | CAGTGGTCTCACAACATGGGC- GACAATGAGGGG | 55 |
PmPT3-R | CAGTGGTCTCATACACTACAC- GGGCATAGTTCTGT | |
Actin2-qRTF | ACGGTAACATTGTGCTCAGT- GGTG | 59 |
Actin2-qRTR | CTTGGAGATCCACATCTGCTGGA | |
PmPT3-qRTF | CTATCCGCTTTCAGCCACCA | 59 |
PmPT3-qRTR | TTCTCCACACAAAATCCGCC |
Table 1 Primers and sequences used in the study
引物Primer | 序列Sequence(5'-3') | 退火温度Annealing temperature/℃ |
---|---|---|
PmPT3-F | CAGTGGTCTCACAACATGGGC- GACAATGAGGGG | 55 |
PmPT3-R | CAGTGGTCTCATACACTACAC- GGGCATAGTTCTGT | |
Actin2-qRTF | ACGGTAACATTGTGCTCAGT- GGTG | 59 |
Actin2-qRTR | CTTGGAGATCCACATCTGCTGGA | |
PmPT3-qRTF | CTATCCGCTTTCAGCCACCA | 59 |
PmPT3-qRTR | TTCTCCACACAAAATCCGCC |
Fig.1 Construction of plant expression vector of P. masso-niana PmPT3 Gene M: DL2000 DNA marker; A: PmPT3 fragment with adding restriction sites; B: BLUNT-PmPT3 enzyme digestion product; C: pBWA(V)HS denzyme digestion product; D: recombinant plasmid pBWA(V) HS-PmPT3 enzyme digestion product; E: 1-11 colony PCR product
Fig.2 Process of genetic transformation of P. massoniana PmPT3 into Arabidopsis LP: Low phosphorus (0.125 mmol/L) ; TG; transgenic plants; A, B: T1 generation transgenic Arabidopsis selection; C, D: T2 generation transgenic Arabidopsis selection; E, F: screening of T3 generation pure commonzanara; G, H: phenotype of Arabidopsis thaliana after 20 days of phosphorus treatment
Fig.3 Analysis of positive gene expression in T1 generation transgenic Arabidopsis thaliana (A) and PCR detection of homozygous strains (B) Different lowercase letters in the figure indicate significant differences at the P<0.05 level
Fig.4 Effect of low phosphorus stress on the POD(A), SOD(B), CAT(C) activity and MDA(D) content of transgenic Arabidopsis LP: Low phosphorus (0.125 mmol/L); TG: transgenic plants; different lowercase letters in the figure indicate significant differences at the P<0.05 level. The same below
Fig.6 Effect of low phosphorus stress on the above-ground dry weight (A), root dry weight (B), total dry weight (C) and root to shoot ratio (D) of transgenic Arabidopsis
[1] |
Patel M, Rangani J, Kumari A, et al. Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut)for mitigation of nitrogen and/or phosphorus starvation[J]. Journal of Biotechnology, 2020, 323:136-158.
doi: 10.1016/j.jbiotec.2020.08.008 URL |
[2] | 许仙菊, 张永春. 植物耐低磷胁迫的根系适应性机制研究进展[J]. 江苏农业学报, 2018, 34(6):1425-1429. |
Xu XJ, Zhang YC. Research progress on the root adaptation mechanism of plants under low phosphorus stress[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(6):1425-1429. | |
[3] | 王保明, 陈永忠, 王湘南, 等. 植物低磷胁迫响应及其调控机制[J]. 福建农林大学学报:自然科学版, 2015, 44(6):567-575. |
Wang BM, Chen YZ, Wang XN, et al. The response to low phosphorus stress and its regulation mechanism in plants[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2015, 44(6):567-575. | |
[4] |
Liu Y, Mi GH, Chen FJ, et al. Rhizosphere effect and root growth of two maize(Zea mays L.)genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167(2):217-223.
doi: 10.1016/j.plantsci.2004.02.026 URL |
[5] |
Zhang T, Wen XP, Ding GJ. Ectomycorrhizal symbiosis enhances tolerance to low phosphorous through expression of phosphate transporter genes in Masson pine(Pinus massoniana)[J]. Acta Physiologiae Plantarum, 2017, 39(4):1-12.
doi: 10.1007/s11738-016-2300-x URL |
[6] | Smith FW, Rae AL, Hawkesford MJ. Molecular mechanisms of phosphate and sulphate transport in plants[J]. Biochimica et Biophysica Acta:BBA - Biomembranes, 2000, 1465(1/2):236-245. |
[7] |
Mudge SR, Rae AL, Diatloff E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J]. The Plant Journal, 2002, 31(3):341-353.
doi: 10.1046/j.1365-313X.2002.01356.x URL |
[8] | 陈丽玉, 秦璐, 赵静, 等. 豆科植物Pht1磷转运蛋白家族基因的研究进展[J]. 大豆科学, 2015, 34(6):1057-1065. |
Chen LY, Qin L, Zhao J, et al. Advances in Pht1 phosphate transporter family genes in legumes[J]. Soybean Science, 2015, 34(6):1057-1065. 1058-1065. | |
[9] | 李慧平, 王庆竹, 汤纬玮, 等. 超表达马尾松PmMYB169基因提高转基因拟南芥耐低磷能力[J]. 分子植物育种, 2018, 16(24):8048-8055. |
Li HP, Wang QZ, Tang WW, et al. Low phosphorus tolerance of transgenic Arabidopsis thaliana enhanced by overexpression of Pinus massoniana PmMYB169 gene[J]. Molecular Plant Breeding, 2018, 16(24):8048-8055. | |
[10] | 曹玉曼. 蒺藜苜蓿磷转运体基因MtPT5和MtPT6功能研究[D]. 杨凌:西北农林科技大学, 2019. |
Cao YM. Functional analysis of phosphate transporter genes MtPT5 and MtPT6 in Medicago truncatula[D]. Yangling:Northwest A & F University, 2019. | |
[11] | Xu YJ, Bao H, Fei HT, et al. Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2020 |
[12] |
Naureen Z, Sham A, Al Ashram H, et al. Effect of phosphate nutrition on growth, physiology and phosphate transporter expression of cucumber seedlings[J]. Plant Physiology and Biochemistry, 2018, 127:211-222.
doi: S0981-9428(18)30151-7 pmid: 29614440 |
[13] | 陈婉婷, 陈冉红, 李娇阳, 等. 杉木磷转运蛋白ClPht1;2基因克隆与表达特性分析[J]. 西北林学院学报, 2020, 35(5):1-8. |
Chen WT, Chen RH, Li JY, et al. Cloning and expression analysis of phosphorus transporter gene ClPht1;2 in Cunninghamia lanceolata[J]. Journal of Northwest Forestry University, 2020, 35(5):1-8. | |
[14] |
Fan XN, Che XR, Lai WZ, et al. The auxin-inducible phosphate transporter AsPT5 mediates phosphate transport and is indispensable for arbuscule formation in Chinese milk vetch at moderately high phosphate supply[J]. Environmental Microbiology, 2020, 22(6):2053-2079.
doi: 10.1111/emi.v22.6 URL |
[15] | 孙晓波, 陈佩珍, 吴晓刚, 等. 马尾松PmAOX基因克隆与不同逆境胁迫表达分析[J]. 南京林业大学学报:自然科学版, 2020, 44(4):70-78. |
Sun XB, Chen PZ, Wu XG, et al. The cloning and expression analysis of PmAOX gene from Pinus massoniana under different stress[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2020, 44(4):70-78. | |
[16] |
Yang SH, Feng Y, Zhao Y, et al. Overexpression of a Eutrema salsugineum phosphate transporter gene EsPHT1;4 enhances tolerance to low phosphorus stress in soybean[J]. Biotechnology Letters, 2020, 42(11):2425-2439.
doi: 10.1007/s10529-020-02968-0 URL |
[17] | Zhang CX, Meng S, Li MJ, et al. Genomic identification and expression analysis of the phosphate transporter gene family in poplar[J]. Frontiers in Plant Science, 2016, 7:1398. |
[18] | 张传玲. VIGS介导的番茄高亲和磷转运蛋白基因SlPT1功能分析[D]. 沈阳:沈阳农业大学, 2019. |
Zhang CL. Functional analysis of SlPT1, a tomato high-affinity phosphate transporter gene by VIGS[D]. Shenyang:Shenyang Agricultural University, 2019. | |
[19] | Sun Y, Gao L, Wang D, et al. Identification and expression analysis of the Hevea brasiliensis phosphate transporter 1 gene family[J]. Trees, 2020:1-13. |
[20] |
Liu F, Chang XJ, Ye Y, et al. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice[J]. Molecular Plant, 2011, 4(6):1105-1122.
doi: 10.1093/mp/ssr058 URL |
[21] |
Cao MX, Liu HZ, Zhang C, et al. Functional analysis of StPHT1;7, a Solanum tuberosum L. phosphate transporter gene, in growth and drought tolerance[J]. Plants, 2020, 9(10):1384.
doi: 10.3390/plants9101384 URL |
[22] |
Gechev T, Petrov V. Reactive oxygen species and abiotic stress in plants[J]. International Journal of Molecular Sciences, 2020, 21(20):7433.
doi: 10.3390/ijms21207433 URL |
[23] | Takagi D, Miyagi A, Tazoe Y, et al. Phosphorus toxicity disrupts Rubisco activation and reactive oxygen species defence systems by phytic acid accumulation in leaves[J]. Plant, Cell & Environment, 2020, 43(9):2033-2053. |
[24] |
Roch GV, Maharajan T, Krishna TPA, et al. Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet(Setaria italica)genotypes[J]. Planta, 2020, 252(6):1-9.
doi: 10.1007/s00425-020-03403-4 URL |
[25] |
Wu XL, Jia QY, Ji SX, et al. Gamma-aminobutyric acid(GABA)alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synjournal and reactive oxygen species metabolism[J]. BMC Plant Biology, 2020, 20(1):1-21.
doi: 10.1186/s12870-019-2170-7 URL |
[26] |
da Ros LM, Mansfield SD. Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence[J]. Plant Biotechnology Journal, 2020, 18(2):470-478.
doi: 10.1111/pbi.v18.2 URL |
[1] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[2] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[3] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[4] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[5] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[6] | LIN Ke-yun, DUAN Yu-jing, WANG Gao-sheng, SUN Nian-li, FANG Yu-jie, WANG You-ping. Cloning and Functional Identification of BnNF-YA1 in Brassica napus L. [J]. Biotechnology Bulletin, 2022, 38(4): 106-116. |
[7] | HAO Qing-qing, YAO Sheng, LIU Jia-he, CHEN Pei-zhen, ZHANG Meng-yang, JI Kong-shu. Cloning and Expression Analysis of NAC Transcription Factor PmNAC8 in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(4): 202-216. |
[8] | YANG Yan, YU Long-feng, WANG Shao-mei, LI Wei-na, GE Feng. Effects of FPS and SS Co-overexpression in Panax notoginseng Cells on Saponins Synthesis [J]. Biotechnology Bulletin, 2022, 38(3): 50-58. |
[9] | SUN Rui-fen, ZHANG Yan-fang, NIU Su-qing, GUO Shu-chun, LI Su-ping, YU Hai-feng, NIE Hui, MOU Ying-nan. Expression Analysis and Functional Verification of the HaACO1 Gene in Sunflower [J]. Biotechnology Bulletin, 2021, 37(9): 114-124. |
[10] | CUI Xiang-hua, TAO Nan, CHENG Bo-pu, ZHAO Yong-chang, CHEN Wei-min, LI Jing. Screening Promoters for Genetic Transformation of Cyclocybe aegerita [J]. Biotechnology Bulletin, 2021, 37(5): 259-266. |
[11] | YANG Hua-jie, ZHOU Yu-ping, FAN Tian, LV Tian-xiao, XIE Chu-ping, TIAN Chang-en. Screening and Identification of IQM4-Interacting Proteins in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2021, 37(11): 190-196. |
[12] | Luo Xuan, Xu Liyuan, Wang Yongze, Zhao Jinfang, Zhao xiao, Wang Jinhua,. Cloning L-lactate Dehydrogenase Gene from Pediococcus acidilactici and Overexpression of It in Recombination Strain E.coli JH12 [J]. Biotechnology Bulletin, 2014, 0(4): 121-126. |
[13] | Hui Huandong, Liu Yong, Liu Shaojun. Effect of Overexpressed Exogenous Necdin on the Cell Proliferation of P19 Embryonal Carcinoma Cells [J]. Biotechnology Bulletin, 2013, 0(10): 165-169. |
[14] | Hu Xulin Kee Kehkooi . The Overexpression of PELO in Human Embryonic Stem Cells [J]. Biotechnology Bulletin, 2013, 0(10): 170-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||