Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (11): 81-91.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0659
Previous Articles Next Articles
WANG Zhao-yu1(), CHANG Ming-chang1,2(), XU Li-jing1,2(), MENG Jun-long1,2, ZUO Ning-ke1, PAN Xu1
Received:
2021-05-25
Online:
2021-11-26
Published:
2021-12-03
Contact:
CHANG Ming-chang,XU Li-jing
E-mail:1335909068@qq.com;sxmushroom@126.com;xulijingsx@hotmail.com
WANG Zhao-yu, CHANG Ming-chang, XU Li-jing, MENG Jun-long, ZUO Ning-ke, PAN Xu. Structural Characterization,Physicochemical Properties of Melanin from Fruiting Body,Hyphae and Spores of Ganoderma lucidum[J]. Biotechnology Bulletin, 2021, 37(11): 81-91.
Fig. 1 Melanin of fruiting body,hyphae and spores of homologous G. lucidum A:Melanin in G. lucidum fruiting body(GLM). B:Melanin in G. lucidum hyphae(GLHM). C:Melanin in G. lucidum spores(GLSM). The same below
来源Source | 元素组成Element composition/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | C/N | C/H | O/N | S/N | ||
灵芝子实体黑色素GLM | 53.97 | 5.28 | 2.65 | 37.60 | 0.50 | 20.36 | 10.22 | 14.18 | 0.013 | |
灵芝菌丝体黑色素GLHM | 56.97 | 5.66 | 4.53 | 32.33 | 0.51 | 12.58 | 10.06 | 7.13 | 0.015 | |
灵芝孢子黑色素GLSM | 50.32 | 5.23 | 7.39 | 36.43 | 0.63 | 6.8 | 9.62 | 4.92 | 0.017 | |
合成真黑色素Synthetic DOPA melanin | 56.45 | 3.15 | 8.49 | 31.82 | 0.09 | 6.64 | 17.92 | 3.75 | 0.010 | |
棕黑色素Phaeomelanin | 46.24 | 4.46 | 9.36 | 30.16 | 9.78 | 4.94 | 10.37 | 3.22 | 1.040 |
Table 1 Elemental composition analysis of GLM,GLHM and GLSM
来源Source | 元素组成Element composition/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | C/N | C/H | O/N | S/N | ||
灵芝子实体黑色素GLM | 53.97 | 5.28 | 2.65 | 37.60 | 0.50 | 20.36 | 10.22 | 14.18 | 0.013 | |
灵芝菌丝体黑色素GLHM | 56.97 | 5.66 | 4.53 | 32.33 | 0.51 | 12.58 | 10.06 | 7.13 | 0.015 | |
灵芝孢子黑色素GLSM | 50.32 | 5.23 | 7.39 | 36.43 | 0.63 | 6.8 | 9.62 | 4.92 | 0.017 | |
合成真黑色素Synthetic DOPA melanin | 56.45 | 3.15 | 8.49 | 31.82 | 0.09 | 6.64 | 17.92 | 3.75 | 0.010 | |
棕黑色素Phaeomelanin | 46.24 | 4.46 | 9.36 | 30.16 | 9.78 | 4.94 | 10.37 | 3.22 | 1.040 |
溶液Solution | 灵芝子实体黑色素GLM | 灵芝菌丝体黑色素GLHM | 灵芝孢子黑色素GLSM |
---|---|---|---|
1 mol·L-1 HCl | - | - | - |
1 mol·L-1 NaOH | 0.897±0.002 | 0.884±0.004 | 0.861±0.005 |
1 mol·L-1 NaCl | - | - | - |
蒸馏水Distilled water | - | - | - |
正丁醇N-butanol | - | - | - |
无水乙醇Absolute alcohol | 0.009±0.001 | - | - |
75%无水乙醇75% absolute alcohol | 0.015±0.002 | 0.016±0.001 | - |
异丙醇Isopropanol | - | - | - |
氯仿Chloroform | - | - | - |
乙酸乙酯Ethyl acetate | - | - | - |
Table 2 Solubility of GLM,GLHM and GLSM
溶液Solution | 灵芝子实体黑色素GLM | 灵芝菌丝体黑色素GLHM | 灵芝孢子黑色素GLSM |
---|---|---|---|
1 mol·L-1 HCl | - | - | - |
1 mol·L-1 NaOH | 0.897±0.002 | 0.884±0.004 | 0.861±0.005 |
1 mol·L-1 NaCl | - | - | - |
蒸馏水Distilled water | - | - | - |
正丁醇N-butanol | - | - | - |
无水乙醇Absolute alcohol | 0.009±0.001 | - | - |
75%无水乙醇75% absolute alcohol | 0.015±0.002 | 0.016±0.001 | - |
异丙醇Isopropanol | - | - | - |
氯仿Chloroform | - | - | - |
乙酸乙酯Ethyl acetate | - | - | - |
Fig. 4 Thermal and pH stability of GLM,GLHM and GLSM A:Thermal stability of GLM. B:Thermal stability of GLHM. C:Thermal stability of GLSM. D:pH stability of GLM,GLHM and GLSM. The error line in the figure refers to the standard deviation. The same below
Fig. 5 Light stability and oxidation reduction of GLM,GLHM and GLSM A:Light stability of GLM. B:Light stability of GLHM. C:Light stability of GLSM. D:Stability of H2O2 in GLM,GLHM and GLSM. E:Stability of Na2SO3 in GLM,GLHM and GLSM
Fig. 6 Antioxidant activities of GLM,GLHM and GLSM in vitro A:DPPH scavenging capacity of GLM,GLHM and GLSM. B:Reducing ability of GLM,GLHM and GLSM. C:Superoxide anion radical-scavenging ability of GLM,GLHM and GLSM. D:Hydroxyl radical scavenging ability of GLM,GLHM and GLSM. The lowercase letters indicate that the difference among VC,GLM,GLHM and GLSM at the same concentration reached a significant level(P< 0.05). The same below
[1] |
Riley PA. Melanin[J]. Int J Biochem Cell Biol, 1997, 29(11): 1235-1239.
doi: 10.1016/S1357-2725(97)00013-7 URL |
[2] |
Langfelder K, Streibel M, Jahn B, et al. Biosynjournal of fungal melanins and their importance for human pathogenic fungi[J]. Fungal Genet Biol, 2003, 38(2): 143-158.
pmid: 12620252 |
[3] |
Zou Y, Yang Y, Zeng B, et al. Comparison of physicochemical properties and antioxidant activities of melanins from fruit-bodies and fermentation broths of Auricularia auricula[J]. Int J Food Prop, 2013, 16(4): 803-813.
doi: 10.1080/10942912.2011.567433 URL |
[4] |
Shi F, Li J, Yang L, et al. Hypolipidemic effect and protection ability of liver-kidney functions of melanin from Lachnum YM226 in high-fat diet fed mice[J]. Food Funct, 2018, 9(2): 880-889.
doi: 10.1039/C7FO01294B URL |
[5] |
Hou RL, Liu X, Yan JJ, et al. Characterization of natural melanin from Auricularia Auricula and its hepatoprotective effect on acute alcohol liver injury in mice[J]. Food Funct, 2019, 10(2): 1017-1027.
doi: 10.1039/C8FO01624K URL |
[6] |
Li S, Yang L, Li J, et al. Structure, molecular modification, and anti-radiation activity of melanin from Lachnum YM156 on μLtraviolet B-induced injury in mice[J]. Appl Biochem Biotechnol, 2019, 188(2): 555-567.
doi: 10.1007/s12010-018-2898-9 URL |
[7] |
Xu LJ, Li J, Chang MC, et al. Comparison of physicochemical and biochemical properties of natural and arginine-modified melanin from medicinal mushroomGanoderma lucidum[J]. J Basic Microbiol, 2020, 60(11/12): 1014-1028.
doi: 10.1002/jobm.v60.11-12 URL |
[8] | 常明昌. 食用菌栽培学[M]. 北京: 中国农业出版社, 2003. |
Chang MC. Cultivation of edible fungi[M]. Beijing: China Agricultural Publishing House, 2003. | |
[9] |
Sun S, Zhang X, Chen W, et al. Production of natural edible melanin by Auricularia Auricula and its physicochemical properties[J]. Food Chem, 2016, 196: 486-492.
doi: 10.1016/j.foodchem.2015.09.069 URL |
[10] | 霍世欣, 周陶忆, 司晓晶, 等. 荷叶黄酮化合物对胰脂肪酶抑制作用的研究[J]. 天然产物研究与开发, 2008, 20(2): 328-331. |
Huo SX, Zhou TY, Si XJ, et al. Inhibitory effect on pancreatic lipase of flavonoids derived from Lotus leaf[J]. Nat Prod Res Dev, 2008, 20(2): 328-331. | |
[11] | 顾君, 孙怡. 侧柏叶不同提取部位抑制胰脂肪酶及抗氧化活性筛选[J]. 中国实验方剂学杂志, 2015, 21(14): 141-144. |
Gu J, Sun Y. Study on inhibition of pancreatic lipase and antioxidation from Platycladus orientalis leaves in vitro[J]. Chin J Exp Tradit Med Formulae, 2015, 21(14): 141-144. | |
[12] | 鲁明. 高粱黑粉菌黑色素分离、结构鉴定与生物活性研究[D]. 沈阳:沈阳农业大学, 2021. |
Lu M. Research on isolation, structure and bioactivies of melanins from Sphacelotheca reiliana[D]. Shenyang:Shenyang Agricultural University, 2021. | |
[13] | 侯若琳, 袁源, 项凯凯, 等. 纤维素酶-超声波协同提取黑木耳黑色素工艺及其抗氧化活性分析[J]. 菌物学报, 2019, 38(3): 414-427. |
Hou RL, Yuan Y, Xiang KK, et al. Cellulase and μLtrasonic wave synergistic extraction technology of melanin from Auricularia heimuer and analysis of antioxidant activity of the melanin product[J]. Mycosystema, 2019, 38(3): 414-427. | |
[14] | Ye M, Chen X, Li GW, et al. Structural characteristics of pheomelanin-like pigment from Lachnum singerianum[J]. Adv Mater Res, 2011, 284/285/286: 1742-1745. |
[15] | 李俊. 灵芝黑色素衍生物的制备以及性质研究[D]. 太谷:山西农业大学, 2019. |
Li J. Preparation and properties of Ganoderma lucidum melanin[D]. Taigu:Shanxi Agricultural University, 2019. | |
[16] | Wang HY, Jiang XL, Mu HJ, et al. Structure and protective effect of exopolysaccharide from P. Agglomerans strain KFS-9 against UV radiation[J]. Microbiol Res, 2007, 162(2): 124-129. |
[17] |
Barros L, Falcão S, Baptista P, et al. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays[J]. Food Chem, 2008, 111(1): 61-66.
doi: 10.1016/j.foodchem.2008.03.033 URL |
[18] | 徐颖, 郭增军. 太白乌头提取物抗氧化活性研究[J]. 现代中药研究与实践, 2008, 22(1): 38-40. |
Xu Y, Guo ZJ. Study on antioxidant activity of extracts from Aconitum taipeicum[J]. Res Pract Chin Med, 2008, 22(1): 38-40. | |
[19] | 白生文, 汤超, 田京, 等. 沙棘果渣总黄酮提取工艺及抗氧化活性分析[J]. 食品科学, 2015, 36(10): 59-64. |
Bai SW, Tang C, Tian J, et al. Extraction and antioxidant activity of total flavonoids from sea buckthorn pomace[J]. Food Sci, 2015, 36(10): 59-64. | |
[20] | 石芳. 粒毛盘菌黑色素的精氨酸修饰及其生物活性研究[D]. 合肥:合肥工业大学, 2018. |
Shi F. Arginine modification and biological activity of melanin from Lachnum sp[D]. Hefei:Hefei University of Technology, 2018. | |
[21] |
Ito S, Fujita K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography[J]. Anal Biochem, 1985, 144(2): 527-536.
pmid: 3993914 |
[22] |
Hou R, Liu X, Xiang K, et al. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom[J]. Food Chem, 2019, 277: 533-542.
doi: 10.1016/j.foodchem.2018.11.002 URL |
[23] | 陈静, 丁洁, 沙芮, 等. 响应面法优化超声辅助提取黑芝麻黑色素的工艺[J]. 食品研究与开发, 2020, 41(2): 52-60. |
Chen J, Ding J, Sha R, et al. Optimization of black sesame melanin μLtrasonic assist extraction from black sesame by response surface methodology[J]. Food Res Dev, 2020, 41(2): 52-60. | |
[24] | 刘鑫, 袁源, 侯若琳, 等. 毛木耳黑色素提取条件优化及体外抗氧化活性研究[J]. 天然产物研究与开发, 2019, 31(10): 1688-1696, 1752. |
Liu X, Yuan Y, Hou RL, et al. Optimization of extraction conditions of melanin from Auricularia polytricha and its antioxidant activities in vitro[J]. Nat Prod Res Dev, 2019, 31(10): 1688-1696, 1752. | |
[25] |
Sun S, Zhang X, Sun S, et al. Production of natural melanin by Auricularia Auricula and study on its molecular structure[J]. Food Chem, 2016, 190: 801-807.
doi: 10.1016/j.foodchem.2015.06.042 URL |
[26] | 吕大进. 薏苡果壳黑色素提制鉴定、稳定性及其形成生理机制[D]. 重庆:西南大学, 2019. |
Lv DJ. The preparation identification, stability and formative physiological mechanism of melanins in seed hulls of Coix lacryma-jobi L[D]. Chongqing:Southwest University, 2019. | |
[27] |
Pan YM, Zhu ZR, Huang ZL, et al. Characterisation and free radical scavenging activities of novel red pigment from Osmanthus fragrans’ seeds[J]. Food Chem, 2009, 112(4): 909-913.
doi: 10.1016/j.foodchem.2008.06.077 URL |
[28] | 赵萍, 王雅, 魏明广, 等. 葵花籽壳黑色素提取鉴定及抗氧化性研究[J]. 食品工业科技, 2012, 33(22): 133-136, 140. |
Zhao P, Wang Y, Wei MG, et al. Study on extraction, identification and antioxidant activity of melanin of sunflower seed shell[J]. Sci Technol Food Ind, 2012, 33(22): 133-136, 140. | |
[29] |
Tu YG, Sun YZ, Tian YG, et al. Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl(Gallus gallus domesticus Brisson)[J]. Food Chem, 2009, 114(4): 1345-1350.
doi: 10.1016/j.foodchem.2008.11.015 URL |
[30] | 杨亚杰, 李慧, 胡清清, 等. 乌骨鸡黑色素的体外抗氧化活性及其对人脐静脉内皮细胞氧化损伤的保护作用[J]. 南昌大学学报:理科版, 2019, 43(1): 59-64. |
Yang YJ, Li H, Hu QQ, et al. Protective effect of melanin from Black-bone sliky fowl on human umbilical vein endothelial cell Injury and antioxidant activity in vitro[J]. J Nanchang Univ:Nat Sci, 2019, 43(1): 59-64. |
[1] | HUANG Hai-chen, LI Xiao-min, XUE Fan-zheng, WU Xiao-ping, ZHANG Jun-li, FU Jun-sheng. Screening, Identification, and Optimization of Culture Conditions of a Melanin High-yielding Strain of Hypoxylon sp. [J]. Biotechnology Bulletin, 2023, 39(1): 284-294. |
[2] | XUE Fan-zheng, HUANG Hai-chen, WU Fu-quan, LI Xiao-min, WU Xiao-ping, FU Jun-sheng. Research Status and Industrial Application of Fungal Melanin [J]. Biotechnology Bulletin, 2021, 37(11): 32-41. |
[3] | CHENG Xing-an, ZHANG Shu-ming, ZHOU Xiao-wu, WU Bo, LIN Xian-wei, QIN Xiang-jing, HUANG Su-qing, LIU Zhan-mei, JIANG Xu-hong. Study on Inhibition Mechanism of Melanogenesis and Melanin Synthesis of B16F10 Cell Induced by Two Natural Products [J]. Biotechnology Bulletin, 2017, 33(8): 199-205. |
[4] | Pan Yue,Chen Hui,Feng Zhiyong,Zhao Jing. Variance Analysis of Different Mating Type Strains in Mononuclear Protoplast of Hypsizygus marmoreus [J]. Biotechnology Bulletin, 2014, 0(9): 131-135. |
[5] | Meng Haohao, Xu Ruixia, Dai Rong, Li Hui, Li Liangyuan, Wan Pengcheng, Shi Guoqing. Research Progress of Genes Related to Melanin Synthesis in Sheep [J]. Biotechnology Bulletin, 2014, 0(8): 34-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||