Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (7): 88-97.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0508
Previous Articles Next Articles
LI Zhi-wen1(), LIU Pei-yan1, CHEN Jian-song1,2, LIAO Jin-ling1,2,3, LIN Bo-rong1,2(), ZHUO Kan1,2()
Received:
2021-04-18
Online:
2021-07-26
Published:
2021-08-13
Contact:
LIN Bo-rong,ZHUO Kan
E-mail:lizhiwen2017@126.com;boronglin@scau.edu.cn;zhuokan@scau.edu.cn
LI Zhi-wen, LIU Pei-yan, CHEN Jian-song, LIAO Jin-ling, LIN Bo-rong, ZHUO Kan. Identification of Rice Genes Responding to Both the Nematode Effector MgMO237 and Its Interacting Protein OsCRRSP55[J]. Biotechnology Bulletin, 2021, 37(7): 88-97.
引物 Primer | 引物序列 Sequence(5'-3') | 用途 Purpose |
---|---|---|
OsCRRSP55 F | ATGGCATTCAGTAGCAAAGC | 用于OsCRRSP55基因全长扩增 |
OsCRRSP55 R | TTAGCGGTGCACAACGATCT | |
qOsCRRSP55 F | AGGATCAGTACACGCCGTTC | 用于OsCRRSP55基因的RT-qPCR检测 |
qOsCRRSP55 R | CGCAGTATTGACCGAACCTT | |
OsUBQ-F | CCAGTAAGTCCTCAGCCATGGAG | 用于水稻看家基因OsUBQ(Os03g13170)的RT-qPCR检测[ |
OsUBQ-R | GGACACAATGATTAGGGATC | |
MgMO237-qPCR-F | TTGAGCGAAAGAGTCTAAATC | 用于MgMO237基因的RT-qPCR检测[ |
MgMO237-qPCR-R | ACAGCAGGTCCATACATAA | |
OsCRRSP55-Nco1 F | CGCGGATCCATGGCATTCAGTAGCAAAGC | 用于OsCRRSP55基因瞬时表达载体构建 |
OsCRRSP55:FLAG-Pml1 R | CGACGCGTTTACTTATCGTCGTCATCCTTGT- AATCGCGGTGCACAACGATCTTGG | |
OsWRKY47 F | ATGGACGACCTGCTCGAGAT | 用于OsWRKY47基因的RT-qPCR检测 |
OsWRKY47 R | GGCGATGTCCCATGTAGCAT | |
ERF87-qPCR-F | ACTTGTCTTCTTGTTGTTGTT | 用于植物激素通路相关基因的RT-qPCR检测 |
ERF87-qPCR-R | TCCATCTATCTACTCCTCTATCTA | |
PR-1b-qPCR-F | ACGGGCGTACGTACTGGCTA | |
PR-1b-qPCR-R | CTCGGTATGGACCGTGAAG | |
PR-1a- qPCR-F | CAGTGGTACGACCACGACAG | |
PR-1a-qPCR-R | GGCGAGTAGTTGCAGGTGAT | |
OsTIFY11e-qPCR-F | GTGAGGATGCTTATGCTTGC | |
OsTIFY11e-qPCR-R | GATCCCTAGCATATGTACTAC | |
IAA24-qPCR-F | AATGTTCATCTCTTCCTG | |
IAA24-qPCR-R | ATTCATCATCCATCTTCTC | |
PIL13-qPCR-F | TTCATAACCTGTCAGAGA | |
PIL13-qPCR-R | CGATTGCTTCATCTAATATAG | |
CYCLIN-D3-1-qPCR-F | ATTTCTCAACATTCCCTA | |
CYCLIN-D3-1-qPCR-R | ATTTCGCTATGAACATTG |
Table 1 Primers used in this study
引物 Primer | 引物序列 Sequence(5'-3') | 用途 Purpose |
---|---|---|
OsCRRSP55 F | ATGGCATTCAGTAGCAAAGC | 用于OsCRRSP55基因全长扩增 |
OsCRRSP55 R | TTAGCGGTGCACAACGATCT | |
qOsCRRSP55 F | AGGATCAGTACACGCCGTTC | 用于OsCRRSP55基因的RT-qPCR检测 |
qOsCRRSP55 R | CGCAGTATTGACCGAACCTT | |
OsUBQ-F | CCAGTAAGTCCTCAGCCATGGAG | 用于水稻看家基因OsUBQ(Os03g13170)的RT-qPCR检测[ |
OsUBQ-R | GGACACAATGATTAGGGATC | |
MgMO237-qPCR-F | TTGAGCGAAAGAGTCTAAATC | 用于MgMO237基因的RT-qPCR检测[ |
MgMO237-qPCR-R | ACAGCAGGTCCATACATAA | |
OsCRRSP55-Nco1 F | CGCGGATCCATGGCATTCAGTAGCAAAGC | 用于OsCRRSP55基因瞬时表达载体构建 |
OsCRRSP55:FLAG-Pml1 R | CGACGCGTTTACTTATCGTCGTCATCCTTGT- AATCGCGGTGCACAACGATCTTGG | |
OsWRKY47 F | ATGGACGACCTGCTCGAGAT | 用于OsWRKY47基因的RT-qPCR检测 |
OsWRKY47 R | GGCGATGTCCCATGTAGCAT | |
ERF87-qPCR-F | ACTTGTCTTCTTGTTGTTGTT | 用于植物激素通路相关基因的RT-qPCR检测 |
ERF87-qPCR-R | TCCATCTATCTACTCCTCTATCTA | |
PR-1b-qPCR-F | ACGGGCGTACGTACTGGCTA | |
PR-1b-qPCR-R | CTCGGTATGGACCGTGAAG | |
PR-1a- qPCR-F | CAGTGGTACGACCACGACAG | |
PR-1a-qPCR-R | GGCGAGTAGTTGCAGGTGAT | |
OsTIFY11e-qPCR-F | GTGAGGATGCTTATGCTTGC | |
OsTIFY11e-qPCR-R | GATCCCTAGCATATGTACTAC | |
IAA24-qPCR-F | AATGTTCATCTCTTCCTG | |
IAA24-qPCR-R | ATTCATCATCCATCTTCTC | |
PIL13-qPCR-F | TTCATAACCTGTCAGAGA | |
PIL13-qPCR-R | CGATTGCTTCATCTAATATAG | |
CYCLIN-D3-1-qPCR-F | ATTTCTCAACATTCCCTA | |
CYCLIN-D3-1-qPCR-R | ATTTCGCTATGAACATTG |
Fig. 1 Multiple sequence alignment and conserved motif analysis of plant CRRSP55 proteinsSbCRRSP55(XP_0024654665.1):Sorghum bicolor CRRSP55 protein. ZmCRRSP55(PWZ56059.1):Zea mays CRRSP55 protein. DoCRRSP55(OEL36740.1):Dichanthelium oligosanthes CRRSP55 protein. OsCRRSP5:Rice CRRSP55 protein. AtCRRSP55(AB020745.1 65306-64515):Arabidopsis thaliana CRRSP55 protein. The red dotted box refers to the signal peptide sequence of rice OsCRRSP55 protein. Underlined in red refers to Unknown Function 26(DUF26)domain,and the green box refers to a conserved motif
Fig. 2 Expression levels of OsCRRSP55 gene in riceA:Expression levels of OsCRRSP55 gene in the seeds,roots,stems and leaves of 14-day-old rice. B:Expression levels of OsCRRSP55 gene in the galls at 7 d after M. graminicola infection. The error line in the figure refers to the standard deviation,*:P<0.05 significant difference. The same below
Fig. 3 Expression variations of OsCRRSP55 and WRKY47 genes in the rice treated with salicylic acid and methyl jasmonateA:Expression variations of WRKY47 and OsCRRSP55 genes in the rice treated with salicylic acid for 24 h. B:Expression variations of WRKY47 and OsCRRSP55 genes in the rice treated with methyl jasmonate for 24 h. CK:Water treatment. SA:Salicylic acid treatment. MeJA:Methyl jasmonate treatment. **:P<0.01 significant difference. The same below
Fig. 4 Identification of MgMO237-transgenic rice WT:Wild-type rice. OE61-1 and OE61-2:Different plants of the OE61 line of MgMO237-transgenic rice. OE26-1 and OE26-2:Different plants of line the OE26 of MgMO237-transgenic rice. The transcript of MgMO237 was detected in lines OE61 and OE26 but not in WT
Fig. 5 Statistics of differentially expressed genes between MgMO237-transgenic rice and wild-type rice A:Statistical diagram showing the number of differentially expressed genes in lines OE26 and OE61 of MgMO237-transgenic rice and wild-type rice lines. B:Number of up-regulated genes(left)and down-regulated genes(right)in line OE26 and OE61 of MgMO237-transgenic rice compared with wild-type rice plants. OE26 and OE61:Line OE26 and OE61 of MgMO237 transgenic rice. WT:Wild-type rice
Fig. 6 Confirmation of differentially expressed genes within plant hormone pathways in MgMO237-transgenic rice and wild-type rice by RT-qPCR OE26 and OE61:Line OE26 and OE61 of MgMO237-transgenic rice. WT:Wild-type rice
Fig. 7 Expression levels of genes within rice hormone pathways responding to OsCRRSP55 A:The expression of OsCRRSP55 was detected in rice protoplasts by Western blot. CRRSP55-1,CRRSP55-2 and CRRSP55-3 refer to three biological replicates. B:Expression levels of genes OSERF87,IAA24,PIL13,Cyclin-D3-1,PR-1b and TIFY11e in rice hormone pathways. Black columns:Protoplasts of wild-type rice. Gray columns:Rice protoplasts overexpressing OsCRRSP55
[1] | Singh P.The rice root-knot nematode, Meloidogyne graminicola:an emerging problem in rice-wheat cropping system[J].Indian Journal of Nematology,2010,40:1-11. |
[2] |
Mantelin S,Bellafiore S,Kyndt T.Meloidogyne graminicola:a major threat to rice agriculture[J].Mol Plant Pathol,2017,18(1):3-15.
doi: 10.1111/mpp.12394 pmid: 26950515 |
[3] | 赵洪海,刘维志,梁晨,等.根结线虫在中国的一新纪录种——拟禾本科根结线虫Meloidogyne graminicol[J].植物病理学报,2001,31(2):184-188. |
Zhao HH,Liu WZ,Liang C,et al.Meloidogyne graminicola, A new record species from China[J].Acta Phytopathol Sin,2001,31(2):184-188. | |
[4] | 黄文坤,向超,刘莹,等.水稻拟禾本科根结线虫发生与防治[J].植物病理学报,2018,48(3):289-296. |
Huang WK,Xiang C,Liu Y,et al.Rearch progress on the occurrence and controlling of root-knot nematode Meloidogyne graminicola in rice[J].Acta Phytopathol Sin,2018,48(3):289-296. | |
[5] |
Ju YL,Wu X,Tan GJ,et al.First report of Meloidogyne graminicola on rice in Anhui Province, China[J].Plant Dis,2021,105(2):512.
doi: 10.1094/PDIS-06-20-1319-PDN URL |
[6] |
Plowright R,Bridge J.Effect of Meloidogyne graminicola(Nemat-oda)on the establishment, growth and yield of rice cv Ir36[J].Nematologica,1990,36(1/2/3/4):81-89.
doi: 10.1163/002925990X00059 URL |
[7] |
Chen J,Lin B,Huang Q,et al.A novel Meloidogyne Graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism[J].PLoS Pathog,2017,13(4):e1006301.
doi: 10.1371/journal.ppat.1006301 URL |
[8] |
Naalden D,Haegeman A,de Almeida-Engler J,et al.The Meloidogyne Graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses[J].Mol Plant Pathol,2018,19(11):2416-2430.
doi: 10.1111/mpp.12719 pmid: 30011122 |
[9] |
Zhuo K,Naalden D,Nowak S,et al.A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism[J].Mol Plant Pathol,2019,20(3):346-355.
doi: 10.1111/mpp.12759 pmid: 30315612 |
[10] |
Chen JS,Hu LL,Sun LH,et al.A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism[J].Mol Plant Pathol,2018,19(8):1942-1955.
doi: 10.1111/mpp.2018.19.issue-8 URL |
[11] |
Raineri J,Wang S,Peleg Z,et al.The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J].Plant Mol Biol,2015,88(4/5):401-413.
doi: 10.1007/s11103-015-0329-7 URL |
[12] |
Yu D,Chen C,Chen Z.Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J].Plant Cell,2001,13(7):1527-1540.
pmid: 11449049 |
[13] | 彭喜旭,胡耀军,唐新科,等.茉莉酸和真菌病原诱导的水稻WRKY30转录因子基因的分离及表达特征[J].中国农业科学,2011,44(12):2454-2461. |
Peng XX,Hu YJ,Tang XK,et al.Isolation and expression profiles of rice WRKY30 induced by jasmonic acid application and fungal pathogen infection[J].Sci Agric Sin,2011,44(12):2454-2461. | |
[14] |
Guo L,Li CF,Jiang YZ,et al.Heterologous expression of poplar WRKY18/35 paralogs in Arabidopsis reveals their antagonistic regulation on pathogen resistance and abiotic stress tolerance via variable hormonal pathways[J].Int J Mol Sci,2020,21(15):5440.
doi: 10.3390/ijms21155440 URL |
[15] | 王瑞霞,王振中,纪春艳,等.水杨酸诱导水稻抗菌物质对稻瘟病菌的抑制作用[J].华中农业大学学报,2011,30(2):193-196. |
Wang RX,Wang ZZ,Ji CY,et al.Inhibitory activity of antibiotic substances extraction induced by salicylic acid in rice leaves against Magnaporthe grisea[J].J Huazhong Agric Univ,2011,30(2):193-196. | |
[16] |
Nahar K,Kyndt T,De Vleesschauwer D,et al.The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J].Plant Physiol,2011,157(1):305-316.
doi: 10.1104/pp.111.177576 URL |
[17] |
Yoo SD,Cho YH,Sheen J.Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J].Nat Protoc,2007,2(7):1565-1572.
doi: 10.1038/nprot.2007.199 URL |
[18] |
Vaattovaara A,Brandt B,Rajaraman S,et al.Mechanistic insights into the evolution of DUF26-containing proteins in land plants[J].Commun Biol,2019,2:56.
doi: 10.1038/s42003-019-0306-9 pmid: 31924924 |
[19] | Yeh YH,Chang YH,Huang PY,et al.Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J].Front Plant Sci,2015,6:322. |
[20] |
Bourdais G,Burdiak P,Gauthier A,et al.Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J].PLoS Genet,2015,11(7):e1005373.
doi: 10.1371/journal.pgen.1005373 URL |
[21] |
Miyakawa T,Miyazono K,Sawano Y,et al.Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases[J].Proteins,2009,77(1):247-251.
doi: 10.1002/prot.v77:1 URL |
[22] | Sawano Y,Miyakawa T,Yamazaki H,et al.Purification, characterization, and molecular gene cloning of an antifungal protein from Ginkgo biloba seeds[J].Biol Chem,2007,388(3):273-280. |
[23] |
Miyakawa T,Hatano K,Miyauchi Y,et al.A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity[J].Plant Physiol,2014,166(2):766-778.
doi: 10.1104/pp.114.242636 pmid: 25139159 |
[24] |
Ma LS,Wang L,Trippel C,et al.The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins[J].Nat Commun,2018,9(1):1711.
doi: 10.1038/s41467-018-04149-0 URL |
[25] |
Yamamoto T,Yoshida Y,Nakajima K,et al.Expression of RSOsPR10 in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively[J].Plant Direct,2018,2(3):e00049.
doi: 10.1002/pld3.49 URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||