Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (5): 201-214.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1219
Previous Articles Next Articles
LIU Kun1(), LI Guo-jing2, YANG Qi2()
Received:
2021-09-22
Online:
2022-05-26
Published:
2022-06-10
Contact:
YANG Qi
E-mail:liukun@imau.edu.cn;atp_yangqi@imau.edu.cn
LIU Kun, LI Guo-jing, YANG Qi. Research Progress in DREB/CBF Transcription Factor Involved in Responses in Plant to Abiotic Stress[J]. Biotechnology Bulletin, 2022, 38(5): 201-214.
科Family | 植物Plant | DREB分类DREB classification | 总数Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | DREB | AP2/ERF | ||||
禾本科Gramineae | 水稻Oryzae sativa[ | 10 | 6 | 5 | 12 | 15 | 9 | 57 | 163 | ||
玉米Zea mays[ | 10 | 4 | 1 | 11 | 13 | 10 | 49 | 167 | |||
小麦Triticum aestivum[ | 39 | 5 | 0 | 1 | 4 | 8 | 57 | 117 | |||
大麦Hordeum vulgare[ | 9 | 3 | 2 | 1 | 1 | 2 | 18 | 53 | |||
毛竹Phyllostachys edulis[ | 7 | 6 | 0 | 14 | 6 | 14 | 47 | 142 | |||
二穗短柄草Brachypodium distachyon[ | 22 | 5 | 6 | 11 | 11 | 10 | 65 | 149 | |||
高粱Sorghum bicolor[ | 8 | 11 | 5 | 2 | 20 | 6 | 52 | 126 | |||
豆科Leguminosae | 鹰嘴豆Cicer arietinum[ | 6 | 5 | 1 | 14 | 10 | 7 | 43 | 147 | ||
木豆Cajanus cajan[ | 5 | 9 | 1 | 18 | 10 | 7 | 50 | 176 | |||
蒺藜苜蓿Medicago truncatula[ | 4 | 7 | 1 | 14 | 11 | 4 | 41 | 131 | |||
菜豆Phaseolus vulgaris[ | 8 | 8 | 1 | 19 | 10 | 8 | 54 | 179 | |||
百脉根Lotus japonicus[ | 7 | 4 | 1 | 18 | 11 | 7 | 48 | 140 | |||
大豆Glycine max[ | 3 | 6 | 1 | 11 | 7 | 9 | 37 | 148 | |||
十字花科Brassicaceae | 油菜Brassica rapa[ | 10 | 16 | 2 | 36 | 26 | 19 | 109 | 291 | ||
拟南芥Arabidopsis thaliana[ | 6 | 8 | 1 | 16 | 16 | 10 | 57 | 147 | |||
欧洲油菜Brassica napus[ | 35 | 42 | 81 | 33 | 23 | 0 | 214 | 515 | |||
甘蓝Brassica oleracea[ | 8 | 9 | 1 | 33 | 23 | 17 | 91 | 226 | |||
杨柳科Salicaceae | 毛白杨Populus trichocarpa[ | 6 | 18 | 2 | 26 | 14 | 11 | 77 | 200 | ||
绦柳Salix matsudana[ | 10 | 31 | 3 | 45 | 26 | 20 | 135 | 364 | |||
红皮柳salix purpurea[ | 10 | 16 | 2 | 26 | 13 | 10 | 77 | 189 | |||
钻天柳S. arbutifolia[ | 4 | 8 | 2 | 19 | 15 | 9 | 57 | 173 | |||
大戟科Euphorbiaceae | 蓖麻Ricinus communis[ | 6 | 5 | 1 | 10 | 7 | 5 | 34 | 114 | ||
蔷薇科Rosaceae | 苹果Malus domestica[ | 3 | 25 | 2 | 18 | 18 | 10 | 76 | 260 | ||
月季Rosa chinensis[ | 7 | 11 | 1 | 15 | 7 | 3 | 44 | 135 | |||
葡萄科Vitaceae | 葡萄Vitis vinifera[ | 7 | 4 | 0 | 13 | 7 | 5 | 36 | 132 | ||
伞形科Umbelliferae | 胡萝卜Daucus carota[ | 15 | 7 | 2 | 21 | 12 | 14 | 71 | 267 | ||
葫芦科Cucurbitaceae | 黄瓜Cucumis sativus[ | 5 | 10 | 20 | 7 | 0 | 0 | 42 | 131 |
Table 1 Summary of AP2/ERF transcription factors in different plants
科Family | 植物Plant | DREB分类DREB classification | 总数Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | DREB | AP2/ERF | ||||
禾本科Gramineae | 水稻Oryzae sativa[ | 10 | 6 | 5 | 12 | 15 | 9 | 57 | 163 | ||
玉米Zea mays[ | 10 | 4 | 1 | 11 | 13 | 10 | 49 | 167 | |||
小麦Triticum aestivum[ | 39 | 5 | 0 | 1 | 4 | 8 | 57 | 117 | |||
大麦Hordeum vulgare[ | 9 | 3 | 2 | 1 | 1 | 2 | 18 | 53 | |||
毛竹Phyllostachys edulis[ | 7 | 6 | 0 | 14 | 6 | 14 | 47 | 142 | |||
二穗短柄草Brachypodium distachyon[ | 22 | 5 | 6 | 11 | 11 | 10 | 65 | 149 | |||
高粱Sorghum bicolor[ | 8 | 11 | 5 | 2 | 20 | 6 | 52 | 126 | |||
豆科Leguminosae | 鹰嘴豆Cicer arietinum[ | 6 | 5 | 1 | 14 | 10 | 7 | 43 | 147 | ||
木豆Cajanus cajan[ | 5 | 9 | 1 | 18 | 10 | 7 | 50 | 176 | |||
蒺藜苜蓿Medicago truncatula[ | 4 | 7 | 1 | 14 | 11 | 4 | 41 | 131 | |||
菜豆Phaseolus vulgaris[ | 8 | 8 | 1 | 19 | 10 | 8 | 54 | 179 | |||
百脉根Lotus japonicus[ | 7 | 4 | 1 | 18 | 11 | 7 | 48 | 140 | |||
大豆Glycine max[ | 3 | 6 | 1 | 11 | 7 | 9 | 37 | 148 | |||
十字花科Brassicaceae | 油菜Brassica rapa[ | 10 | 16 | 2 | 36 | 26 | 19 | 109 | 291 | ||
拟南芥Arabidopsis thaliana[ | 6 | 8 | 1 | 16 | 16 | 10 | 57 | 147 | |||
欧洲油菜Brassica napus[ | 35 | 42 | 81 | 33 | 23 | 0 | 214 | 515 | |||
甘蓝Brassica oleracea[ | 8 | 9 | 1 | 33 | 23 | 17 | 91 | 226 | |||
杨柳科Salicaceae | 毛白杨Populus trichocarpa[ | 6 | 18 | 2 | 26 | 14 | 11 | 77 | 200 | ||
绦柳Salix matsudana[ | 10 | 31 | 3 | 45 | 26 | 20 | 135 | 364 | |||
红皮柳salix purpurea[ | 10 | 16 | 2 | 26 | 13 | 10 | 77 | 189 | |||
钻天柳S. arbutifolia[ | 4 | 8 | 2 | 19 | 15 | 9 | 57 | 173 | |||
大戟科Euphorbiaceae | 蓖麻Ricinus communis[ | 6 | 5 | 1 | 10 | 7 | 5 | 34 | 114 | ||
蔷薇科Rosaceae | 苹果Malus domestica[ | 3 | 25 | 2 | 18 | 18 | 10 | 76 | 260 | ||
月季Rosa chinensis[ | 7 | 11 | 1 | 15 | 7 | 3 | 44 | 135 | |||
葡萄科Vitaceae | 葡萄Vitis vinifera[ | 7 | 4 | 0 | 13 | 7 | 5 | 36 | 132 | ||
伞形科Umbelliferae | 胡萝卜Daucus carota[ | 15 | 7 | 2 | 21 | 12 | 14 | 71 | 267 | ||
葫芦科Cucurbitaceae | 黄瓜Cucumis sativus[ | 5 | 10 | 20 | 7 | 0 | 0 | 42 | 131 |
[1] | 苟艳丽, 张乐, 郭欢, 等. 植物AP2/ERF类转录因子研究进展[J]. 草业科学, 2020, 37(6):1150-1159. |
Gou YL, Zhang L, Guo H, et al. Research progress on the AP2/ERF transcription factor in plants[J]. Pratacultural Sci, 2020, 37(6):1150-1159. | |
[2] | 李科友, 朱海兰. 植物非生物逆境胁迫DREB/CBF转录因子的研究进展[J]. 林业科学, 2011, 47(1):124-134. |
Li KY, Zhu HL. Research progress of DREB/CBF transcription factor in response to abiotic-stresses in plants[J]. Sci Silvae Sin, 2011, 47(1):124-134. | |
[3] |
张麒, 陈静, 李俐, 等. 植物AP2/ERF转录因子家族的研究进展[J]. 生物技术通报, 2018, 34(8):1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142 |
Zhang Q, Chen J, Li L, et al. Research progress on plant AP2/ERF transcription factor family[J]. Biotechnol Bull, 2018, 34(8):1-7. | |
[4] | 柏星轩, 闫雪, 要宇晨, 等. DREB/CBF转录因子在植物非生物胁迫中的作用及研究进展[J]. 生物学杂志, 2017, 34(4):88-93. |
Bai XX, Yan X, Yao YC, et al. The role and research progress of DREB/CBF transcription factors in plant abiotic stress[J]. J Biol, 2017, 34(4):88-93. | |
[5] |
Li MY, Xu ZS, Huang Y, et al. Genome-wide analysis of AP2/ERF transcription factors in carrot(Daucus carota L.)reveals evolution and expression profiles under abiotic stress[J]. Mol Genet Genom, 2015, 290(6):2049-2061.
doi: 10.1007/s00438-015-1061-3 URL |
[6] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene responsive factor(AP2/ERF)transcription factors:mediators of stress responses and developmental programs[J]. New Phytol, 2013, 199(3):639-649.
doi: 10.1111/nph.12291 URL |
[7] |
Allen MD, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J]. EMBO J, 1998, 17(18):5484-5496.
pmid: 9736626 |
[8] |
Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. PNAS, 1997, 94(13):7076-7081.
pmid: 9192694 |
[9] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3):998-1009.
doi: 10.1006/bbrc.2001.6299 URL |
[10] |
Amalraj A, Luang S, Kumar MY, et al. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2. 1L by repressor motif modification[J]. Plant Biotechnol J, 2016, 14(2):820-832.
doi: 10.1111/pbi.12432 URL |
[11] |
Eini O, Yang N, Pyvovarenko T, et al. Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat[J]. PLoS One, 2013, 8(3):e58713.
doi: 10.1371/journal.pone.0058713 URL |
[12] |
Xue GP. Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity[J]. Nucleic Acids Res, 2002, 30(15):e77.
doi: 10.1093/nar/gnf076 URL |
[13] |
Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants[J]. J Exp Bot, 2011, 62(14):4731-4748.
doi: 10.1093/jxb/err210 URL |
[14] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2):173-182.
pmid: 7756828 |
[15] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2):411-432.
doi: 10.1104/pp.105.073783 URL |
[16] |
Jaglo KR, Kleff S, Amundsen KL, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiol, 2001, 127(3):910-917.
pmid: 11706173 |
[17] |
Agarwal PK, Agarwal P, Reddy MK, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25(12):1263-1274.
doi: 10.1007/s00299-006-0204-8 URL |
[18] |
Xiong Y, Fei SZ. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass(Lolium perenne L.)[J]. Planta, 2006, 224(4):878-888.
doi: 10.1007/s00425-006-0273-5 URL |
[19] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8):1391-1406.
pmid: 9707537 |
[20] |
Gilmour SJ, Zarka DG, Stockinger EJ, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. Plant J, 1998, 16(4):433-442.
pmid: 9881163 |
[21] |
Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14(8):1675-1690.
pmid: 12172015 |
[22] |
Haake V, Cook D, Riechmann JL, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002, 130(2):639-648.
doi: 10.1104/pp.006478 URL |
[23] |
Magome H, Yamaguchi S, Hanada A, et al. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor[J]. Plant J, 2004, 37(5):720-729.
doi: 10.1111/j.1365-313X.2003.01998.x URL |
[24] |
Matsukura S, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes[J]. Mol Genet Genom, 2010, 283(2):185-196.
doi: 10.1007/s00438-009-0506-y URL |
[25] | 祝娟娟. 桑树DREB基因家族生物信息学分析及功能研究[D]. 重庆: 西南大学, 2013. |
Zhu JJ. Bioinformatics analysis and functional study of DREB genes from Morus spp[D]. Chongqing: Southwest University, 2013. | |
[26] |
Wilson K, Long D, Swinburne J, et al. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2[J]. Plant Cell, 1996, 8(4):659-671.
pmid: 8624440 |
[27] |
Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage(Brassica rapa ssp. pekinensis)[J]. BMC Genomics, 2013, 14:573.
doi: 10.1186/1471-2164-14-573 URL |
[28] |
Liu Z, Kong L, Zhang M, et al. Genome-wide identification, phylogeny, evolution and expression patterns of AP2/ERF genes and cytokinin response factors in Brassica rapa ssp. pekinensis[J]. PLoS One, 2013, 8(12):e83444.
doi: 10.1371/journal.pone.0083444 URL |
[29] | 邵文靖, 敖特根白音, 郎明林. AP2/ERF转录因子对植物非生物胁迫的应答机制研究进展[J]. 分子植物育种, 2020, 18(15):4981-4988. |
Shao WJ, Ao T, Lang ML. Research advances on the mechanism of AP2/ERF transcriptional factors in response to abiotic stresses in plants[J]. Mol Plant Breed, 2020, 18(15):4981-4988. | |
[30] |
Charfeddine M, Saïdi MN, Charfeddine S, et al. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato(Solanum tuberosum L.)[J]. Mol Biotechnol, 2015, 57(4):348-358.
doi: 10.1007/s12033-014-9828-z pmid: 25491236 |
[31] |
Sharma MK, Kumar R, Solanke AU, et al. Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato[J]. Mol Genet Genomics, 2010, 284(6):455-475.
doi: 10.1007/s00438-010-0580-1 pmid: 20922546 |
[32] |
Sharoni AM, Nuruzzaman M, Satoh K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant Cell Physiol, 2011, 52(2):344-360.
doi: 10.1093/pcp/pcq196 pmid: 21169347 |
[33] |
Zhuang J, Deng DX, Yao QH, et al. Discovery, phylogeny and expression patterns of AP2-like genes in maize[J]. Plant Growth Regul, 2010, 62(1):51-58.
doi: 10.1007/s10725-010-9484-7 URL |
[34] |
Zhuang J, Chen JM, Yao QH, et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum[J]. Mol Biol Rep, 2011, 38(2):745-753.
doi: 10.1007/s11033-010-0162-7 pmid: 20407836 |
[35] |
Zhuang J, Anyia A, Vidmar J, et al. Discovery and expression assessment of the AP2-like genes in Hordeum vulgare[J]. Acta Physiol Plant, 2011, 33(5):1639-1649.
doi: 10.1007/s11738-010-0700-x URL |
[36] | Huang Z, Zhong XJ, He J, et al. Identification and characterization of AP2/ERF transcription factors in moso bamboo(Phyllostachys edulis)[J]. Mol Biol:Mosk, 2016, 50(5):785-796. |
[37] |
Chen L, Han J, Deng X, et al. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon[J]. Sci Rep, 2016, 6:21623.
doi: 10.1038/srep21623 URL |
[38] |
Yan HW, Hong L, Zhou YQ, et al. A genome-wide analysis of the ERF gene family in Sorghum[J]. Genet Mol Res, 2013, 12(2):2038-2055.
doi: 10.4238/2013.May.13.1 pmid: 23766026 |
[39] |
Agarwal G, Garg V, Kudapa H, et al. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea[J]. Plant Biotechnol J, 2016, 14(7):1563-1577.
doi: 10.1111/pbi.12520 pmid: 26800652 |
[40] | Song X, Wang J, Ma X, et al. Origination, expansion, evolutionary trajectory, and expression bias of AP2/ERF superfamily in Brassica napus[J]. Front Plant Sci, 2016, 7:1186. |
[41] |
Thamilarasan SK, Park JI, Jung HJ, et al. Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea[J]. BMC Genomics, 2014, 15:422.
doi: 10.1186/1471-2164-15-422 pmid: 24888752 |
[42] |
Zhuang J, Cai B, Peng RH, et al. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa[J]. Biochem Biophys Res Commun, 2008, 371(3):468-474.
doi: 10.1016/j.bbrc.2008.04.087 URL |
[43] |
Zhang J, Shi SZ, Jiang Y, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow(Salix matsudana)[J]. PeerJ, 2021, 9:e11076.
doi: 10.7717/peerj.11076 URL |
[44] |
Xu W, Li F, Ling L, et al. Genome-wide survey and expression profiles of the AP2/ERF family in Castor bean(Ricinus communis L.)[J]. BMC Genomics, 2013, 14:785.
doi: 10.1186/1471-2164-14-785 URL |
[45] |
Zhang H, Pan X, Liu S, et al. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development[J]. Genomics, 2021, 113(2):474-489.
doi: 10.1016/j.ygeno.2020.10.040 URL |
[46] |
Zhuang J, Peng RH, Cheng ZM, et al. Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera[J]. Sci Hortic, 2009, 123(1):73-81.
doi: 10.1016/j.scienta.2009.08.002 URL |
[47] |
Sun ZM, Zhou ML, Xiao XG, et al. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance[J]. Funct Integr Genomics, 2014, 14(3):453-466.
doi: 10.1007/s10142-014-0372-5 URL |
[48] |
Chinnusamy V, Ohta M, Kanrar S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003, 17(8):1043-1054.
doi: 10.1101/gad.1077503 URL |
[49] |
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants[J]. Trends Plant Sci, 2007, 12(10):444-451.
doi: 10.1016/j.tplants.2007.07.002 URL |
[50] |
Agarwal M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49):37636-37645.
doi: 10.1074/jbc.M605895200 pmid: 17015446 |
[51] |
Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation[J]. Trends Plant Sci, 2018, 23(7):623-637.
doi: 10.1016/j.tplants.2018.04.002 URL |
[52] | Ding YL, Jia YX, Shi YT, et al. OST 1-mediated BTF 3L phosphorylation positively regulates CBF s during plant cold responses[J]. EMBO J, 2018, 37(8):e98228. |
[53] |
Liu Z, Jia Y, Ding Y, et al. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Mol Cell, 2017, 66(1):117-128.e5.
doi: 10.1016/j.molcel.2017.02.016 URL |
[54] |
Wang X, Ding Y, Li Z, et al. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15[J]. Dev Cell, 2019, 51(2):222-235.e5.
doi: S1534-5807(19)30691-4 pmid: 31543444 |
[55] |
Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. Plant Cell, 2001, 13(1):61-72.
pmid: 11158529 |
[56] | 刘坤, 王光霞, 王瑞刚, 等. 中间锦鸡儿CiDREB1C基因增强转基因拟南芥抵抗非生物胁迫的能力[J]. 农业生物技术学报, 2018, 26(10):1688-1697. |
Liu K, Wang GX, Wang RG, et al. CiDREB1C gene from Caragana intermedia enhances abiotic stress tolerance of transgenic Arabidopsis thaliana[J]. J Agric Biotechnol, 2018, 26(10):1688-1697. | |
[57] |
Zhang ZY, Yang Q, Zhang CL, et al. A CkDREB1 gene isolated from Caragana korshinskii Kom. enhances Arabidopsis drought and cold tolerance[J]. Braz J Bot, 2019, 42(1):97-105.
doi: 10.1007/s40415-018-0509-1 URL |
[58] |
Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration[J]. Plant Physiol, 1999, 119(2):463-470.
pmid: 9952441 |
[59] |
Zhao C, Zhang Z, Xie S, et al. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis[J]. Plant Physiol, 2016, 171(4):2744-2759.
doi: 10.1104/pp.16.00533 URL |
[60] |
Jia Y, Ding Y, Shi Y, et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis[J]. New Phytol, 2016, 212(2):345-353.
doi: 10.1111/nph.14088 URL |
[61] |
Novillo F, Alonso JM, Ecker JR, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. PNAS, 2004, 101(11):3985-3990.
doi: 10.1073/pnas.0303029101 URL |
[62] |
Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. PNAS, 2007, 104(52):21002-21007.
doi: 10.1073/pnas.0705639105 URL |
[63] |
Hua J. Defining roles of tandemly arrayed CBF genes in freezing tolerance with new genome editing tools[J]. New Phytol, 2016, 212(2):301-302.
doi: 10.1111/nph.14183 URL |
[64] |
Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. Plant Cell, 2006, 18(5):1292-1309.
doi: 10.1105/tpc.105.035881 pmid: 16617101 |
[65] |
Agarwal P, Agarwal PK, Nair S, et al. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity[J]. Mol Genet Genom, 2007, 277(2):189-198.
doi: 10.1007/s00438-006-0183-z URL |
[66] |
Chen J, Xia X, Yin W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica[J]. Biochem Biophys Res Commun, 2009, 378(3):483-487.
doi: 10.1016/j.bbrc.2008.11.071 URL |
[67] |
Egawa C, Kobayashi F, Ishibashi M, et al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat[J]. Genes Genet Syst, 2006, 81(2):77-91.
doi: 10.1266/ggs.81.77 URL |
[68] |
Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L[J]. Plant J, 2007, 50(1):54-69.
doi: 10.1111/j.1365-313X.2007.03034.x URL |
[69] | 秦红霞, 贾志平, 张海超, 等. 银新杨中与DRE元件结合的转录因子的克隆及鉴定分析[J]. 生物工程学报, 2005, 21(6):906-910 |
Qin HX, Jia ZP, Zhang HC, et al. Isolation and Characterization of a DRE-binding Transcription Factor from Yinxin Poplar(Populus alba × P. alba var. pyramidalis)[J]. Chin J Biotechnol, 2005, 21(6):906-910 | |
[70] | 谢永丽, 王自章, 刘强, 等. 草坪草狗牙根中抗逆基因BeDREB的克隆及功能鉴定[J]. 中国生物化学与分子生物学报, 2005, 21(4):521-527. |
Xie YL, Wang ZZ, Liu Q, et al. Cloning and functional identification of stress-resistant BeDREB genes from Bermuda grass[J]. Chin J Biochem Mol Biol, 2005, 21(4):521-527. | |
[71] |
Sun S, Yu JP, Chen F, et al. Tiny, a Dehydration-responsive element(dre)-binding protein-like transcription factor connecting the dre- and ethylene-responsive element-mediated signaling pathways in Arabidopsis[J]. J Biol Chem, 2008, 283(10):6261-6271.
doi: 10.1074/jbc.M706800200 URL |
[72] |
Chen M, Wang QY, Cheng XG, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochem Biophys Res Commun, 2007, 353(2):299-305.
doi: 10.1016/j.bbrc.2006.12.027 URL |
[73] |
Chen M, Xu Z, Xia L, et al. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean(Glycine max L.)[J]. J Exp Bot, 2009, 60(1):121-135.
doi: 10.1093/jxb/ern269 URL |
[74] |
Figueroa-Yañez L, Pereira-Santana A, Arroyo-Herrera A, et al. RAP2. 4a is transported through the phloem to regulate cold and heat tolerance in Papaya tree(Carica papaya cv. maradol):implications for protection against abiotic stress[J]. PLoS One, 2016, 11(10):e0165030.
doi: 10.1371/journal.pone.0165030 URL |
[75] |
Qin F, Sakuma Y, Tran LS, et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression[J]. Plant Cell, 2008, 20(6):1693-1707.
doi: 10.1105/tpc.107.057380 URL |
[76] |
Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins:the PEST hypothesis[J]. Science, 1986, 234(4774):364-368.
doi: 10.1126/science.2876518 pmid: 2876518 |
[77] | Zhou ML, Ma JT, Pang JF, et al. Regulation of plant stress response by dehydration responsive element binding(DREB)transcription factors[J]. Afr. J. Biotechnol, 2010, 9(54):9255-9269. |
[78] |
Salmerón A, Janzen J, Soneji Y, et al. Direct phosphorylation of NF-kappaB1 p105 by the IkappaB kinase complex on serine 927 is essential for signal-induced p105 proteolysis[J]. J Biol Chem, 2001, 276(25):22215-22222.
doi: 10.1074/jbc.M101754200 pmid: 11297557 |
[79] |
Agarwal PK, Gupta K, Lopato S, et al. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance[J]. J Exp Bot, 2017, 68(9):2135-2148.
doi: 10.1093/jxb/erx118 URL |
[80] | Morimoto K, Ohama N, Kidokoro S, et al. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis[J]. PNAS, 2017, 114(40):E8528-E8536. |
[81] |
Kudo M, Kidokoro S, Yoshida T, et al. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants[J]. Plant Biotechnol J, 2017, 15(4):458-471.
doi: 10.1111/pbi.12644 URL |
[82] |
Kidokoro S, Watanabe K, Ohori T, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression[J]. Plant J, 2015, 81(3):505-518.
doi: 10.1111/tpj.12746 URL |
[83] |
Engels C, Fuganti-Pagliarini R, Marin SRR, et al. Introduction of the rd29A:AtDREB2A CA gene into soybean(Glycine max L. Merril)and its molecular characterization in leaves and roots during dehydration[J]. Genet Mol Biol, 2013, 36(4):556-565.
doi: 10.1590/S1415-47572013000400015 URL |
[84] |
Mizoi J, Ohori T, Moriwaki T, et al. GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression[J]. Plant Physiol, 2013, 161(1):346-361.
doi: 10.1104/pp.112.204875 URL |
[85] |
Reis RR, da Cunha BA, Martins PK, et al. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane[J]. Plant Sci, 2014, 221/222:59-68.
doi: 10.1016/j.plantsci.2014.02.003 URL |
[86] |
Souza WR, Oliveira NG, Vinecky F, et al. Field evaluation of AtDR-EB 2A CA overexpressing sugarcane for drought tolerance[J]. J Agro Crop Sci, 2019, 205(6):545-553.
doi: 10.1111/jac.12341 URL |
[87] |
Schmidt R, Mieulet D, Hubberten HM, et al. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice[J]. Plant Cell, 2013, 25(6):2115-2131.
doi: 10.1105/tpc.113.113068 URL |
[88] |
Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003, 33(4):751-763.
pmid: 12609047 |
[89] |
Gutha LR, Reddy AR. Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance[J]. Plant Mol Biol, 2008, 68(6):533-555.
doi: 10.1007/s11103-008-9391-8 URL |
[90] | Wei T, Deng K, Zhang Q, et al. Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza[J]. Front Plant Sci, 2017, 8:52. |
[91] |
An D, Ma Q, Wang H, et al. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava[J]. Plant Mol Biol, 2017, 94(1/2):109-124.
doi: 10.1007/s11103-017-0596-6 URL |
[92] |
Bouaziz D, Pirrello J, Ben Amor H, et al. Ectopic expression of dehydration responsive element binding proteins(StDREB2)confers higher tolerance to salt stress in potato[J]. Plant Physiol Biochem, 2012, 60:98-108.
doi: 10.1016/j.plaphy.2012.07.029 URL |
[93] |
Bouaziz D, Pirrello J, Charfeddine M, et al. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants[J]. Mol Biotechnol, 2013, 54(3):803-817.
doi: 10.1007/s12033-012-9628-2 pmid: 23250722 |
[94] | Huang B, Liu JY. Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum[J]. Biochim et Biophys Acta BBA Gene Struct Expr, 2006, 1759(6):263-269. |
[95] |
Liang YQ, Li XS, Yang RR, et al. BaDBL1, a unique DREB gene from desiccation tolerant moss Bryum argenteum, confers osmotic and salt stress tolerances in transgenic Arabidopsis[J]. Plant Sci, 2021, 313:111047.
doi: 10.1016/j.plantsci.2021.111047 URL |
[96] |
Liang Y, Li X, Zhang D, et al. ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis[J]. Plant Physiol Biochem, 2017, 120:242-251.
doi: 10.1016/j.plaphy.2017.09.014 URL |
[97] |
Li XS, Liang YQ, Gao B, et al. ScDREB10, an A-5c type of DREB gene of the desert moss Syntrichia caninervis, confers osmotic and salt tolerances to Arabidopsis[J]. Genes, 2019, 10(2):146.
doi: 10.3390/genes10020146 URL |
[98] | Chen JR, Lü JJ, Wang TX, et al. Activation of a DRE-binding transcription factor from Medicago truncatula by deleting a Ser/Thr-rich region[J]. Vitro Cell Dev Biol Plant, 2009, 45(1):1-11. |
[99] |
Lim CJ, Hwang JE, Chen H, et al. Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance[J]. Biochem Biophys Res Commun, 2007, 362(2):431-436.
doi: 10.1016/j.bbrc.2007.08.007 URL |
[100] |
Singh S, Chopperla R, Shingote P, et al. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging[J]. J Biotechnol, 2021, 336:10-24.
doi: 10.1016/j.jbiotec.2021.06.013 URL |
[101] |
Mao L, Deng M, Jiang S, et al. Characterization of the DREBA4-type transcription factor(SlDREBA4), which contributes to heat tolerance in tomatoes[J]. Front Plant Sci, 2020, 11:554520.
doi: 10.3389/fpls.2020.554520 URL |
[102] |
Du X, Li W, Sheng L, et al. Over-expression of Chrysanthemum CmDREB6 enhanced tolerance of Chrysanthemum to heat stress[J]. BMC Plant Biol, 2018, 18(1):178.
doi: 10.1186/s12870-018-1400-8 URL |
[103] |
Zhang Z, Li W, Gao X, et al. DEAR4, a member of DREB/CBF family, positively regulates leaf senescence and response to multiple stressors in Arabidopsis thaliana[J]. Front Plant Sci, 2020, 11:367.
doi: 10.3389/fpls.2020.00367 URL |
[104] |
Liu XQ, Liu CY, Guo Q, et al. Mulberry transcription factor MnDREB4A confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One, 2015, 10(12):e0145619.
doi: 10.1371/journal.pone.0145619 URL |
[105] |
Sharabi-Schwager M, Lers A, Samach A, et al. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity[J]. J Exp Bot, 2010, 61(1):261-273.
doi: 10.1093/jxb/erp300 pmid: 19854800 |
[106] | Porat R, Sharabi-Schwager M, Samach A. Overexpression of the CBF2 transcriptional activator enhances oxidative stress tolerance in Arabidopsis plants[J]. Int J Biol, 2011, 3(2):94. |
[107] |
Zwack PJ, Robinson BR, Risley MG, et al. Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses[J]. Plant Cell Physiol, 2013, 54(6):971-981.
doi: 10.1093/pcp/pct049 pmid: 23539244 |
[108] |
Ban Q, Liu G, Wang Y. A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco[J]. J Plant Physiol, 2011, 168(5):449-458.
doi: 10.1016/j.jplph.2010.08.013 URL |
[109] |
Hong JP, Kim WT. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper(Capsicum annuum L. cv. Pukang)[J]. Planta, 2005, 220(6):875-888.
doi: 10.1007/s00425-004-1412-5 URL |
[110] |
Du HW, Huang M, Zhang ZX, et al. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response[J]. Euphytica, 2014, 198(1):115-126.
doi: 10.1007/s10681-014-1088-2 URL |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[5] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[8] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[9] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[10] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[11] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[12] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[13] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[14] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[15] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||