[1] |
Lanyon SR, Hill FI, Reichel MP, et al. Bovine viral diarrhoea:pathogenesis and diagnosis[J]. Vet J, 2014, 199(2):201-209.
doi: 10.1016/j.tvjl.2013.07.024
pmid: 24053990
|
[2] |
Nelson DD, Duprau JL, Wolff PL, et al. Persistent bovine viral diarrhea virus infection in domestic and wild small ruminants and camelids including the mountain goat(Oreamnos americanus)[J]. Front Microbiol, 2015, 6:1415.
|
[3] |
Gunn GJ, Saatkamp HW, et al. Assessing economic and social pressure for the control of bovine viral diarrhoea virus[J]. Prev Vet Med, 2005, 72(1/2):149-62;discussion 215.
doi: 10.1016/j.prevetmed.2005.08.012
URL
|
[4] |
Tautz N, Tews BA, Meyers G. The molecular biology of pestiviruses[J]. Adv Virus Res, 2015, 93:47-160.
|
[5] |
Brock KV. The many faces of bovine viral diarrhea virus[J]. Vet Clin North Am Food Anim Pract, 2004, 20(1):1-3.
doi: 10.1016/j.cvfa.2003.12.002
URL
|
[6] |
Fu Q, Shi HJ, Shi MT, et al. Bta-miR-29b attenuates apoptosis by directly targeting caspase-7 and NAIF1 and suppresses bovine viral diarrhea virus replication in MDBK cells[J]. Can J Microbiol, 2014, 60(7):455-460.
doi: 10.1139/cjm-2014-0277
URL
|
[7] |
Piontek J, Krug SM, Protze J, et al. Molecular architecture and assembly of the tight junction backbone[J]. Biochim Biophys Acta Biomembr, 2020, 1862(7):183279.
|
[8] |
张楠, 王思迪, 等. 紧密连接相关蛋白对血脑屏障通透性影响的研究进展[J]. 沈阳医学院学报, 2017, 19(1):72-75.
|
|
Zhang N, Wang SD, et al. Research progress of roles of tight junction proteins involved in the permeability of blood-brain barrier[J]. J Shenyang Med Coll, 2017, 19(1):72-75.
|
[9] |
Liu S, et al. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection[J]. J Virol, 2009, 83(4):2011-2014.
doi: 10.1128/JVI.01888-08
URL
|
[10] |
胡新艳, 等. 紧密连接蛋白occludin影响牛病毒性腹泻病毒感染[J]. 中国兽医学报, 2020, 40(11):2119-2126.
|
|
Hu XY, et al. Tight junction protein occludin affects bovine viral diarrhea virus infection[J]. Chin J Vet Sci, 2020, 40(11):2119-2126.
|
[11] |
田瑞鑫, 等. 慢病毒介导牛pre-miR-29b表达的Balb/c小鼠模型建立研究[J]. 黑龙江畜牧兽医, 2019(15):23-27, 177.
|
|
Tian RX, et al. Study on the establishment of bovine pre-miR-29b expressed Balb/c mouse model mediated by Lentivirus[J]. Heilongjiang Animal Sci Vet Med, 2019(15):23-27, 177.
|
[12] |
田瑞鑫, 等. 牛miR-29b影响牛病毒性腹泻病毒感染BALB/c小鼠的作用[J]. 中国兽医学报, 2020, 40(2):264-271.
|
|
Tian RX, et al. Effect of bovine miRNA-29b on bovine viral diarrhea virus infection in BALB/c mice[J]. Chin J Vet Sci, 2020, 40(2):264-271.
|
[13] |
Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease[J]. Cold Spring Harb Perspect Biol, 2018, 10(1):a029314.
|
[14] |
Berndt P, Winkler L, Cording J, et al. Tight junction proteins at the blood-brain barrier:far more than claudin-5[J]. Cell Mol Life Sci, 2019, 76(10):1987-2002.
doi: 10.1007/s00018-019-03030-7
URL
|
[15] |
Vermette D, Hu P, Canarie MF, et al. Tight junction structure, function, and assessment in the critically ill:a systematic review[J]. Intensive Care Med Exp, 2018, 6(1):37.
doi: 10.1186/s40635-018-0203-4
pmid: 30259344
|
[16] |
Bhat AA, Uppada S, Achkar IW, et al. Tight junction proteins and signaling pathways in cancer and inflammation:a functional crosstalk[J]. Front Physiol, 2018, 9:1942.
doi: 10.3389/fphys.2018.01942
URL
|
[17] |
Kim DS, Hosmillo M, et al. Both α2, 3- and α2, 6-linked sialic acids on O-linked glycoproteins act as functional receptors for porcine Sapovirus[J]. PLoS Pathog, 2014, 10(6):e1004172.
|
[18] |
Mandell KJ, Parkos CA. The JAM family of proteins[J]. Adv Drug Deliv Rev, 2005, 57(6):857-867.
doi: 10.1016/j.addr.2005.01.005
URL
|
[19] |
阮文强, 等. 不同来源的3株牛病毒性腹泻病毒对小鼠的致病性分析[J]. 畜牧兽医学报, 2018, 49(10):2232-2239.
|
|
Ruan WQ, et al. Pathogenicity analysis of three bovine viral diarrhea viruses from different sources in mice[J]. Chin J Animal Vet Sci, 2018, 49(10):2232-2239.
|