Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 31-39.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0339
Previous Articles Next Articles
LI Dong-yang1,3(), XIAO Bing4, WANG Chen-yao1, YANG Xian-ming2, LIANG Jin-gang1(), WU Kong-ming2()
Received:
2022-03-22
Online:
2023-01-26
Published:
2023-02-02
Contact:
LIANG Jin-gang,WU Kong-ming
E-mail:hzaulidongyang@163.com;liangjingang@agri.gov.cn;wukongming@caas.cn
LI Dong-yang, XIAO Bing, WANG Chen-yao, YANG Xian-ming, LIANG Jin-gang, WU Kong-ming. Spatio-temporal Expression of Cry1Ab/Cry2Aj Insecticidal Protein in Genetically Modified Maize Ruifeng 125 with Stacked Insect and Herbicide Resistance Traits[J]. Biotechnology Bulletin, 2023, 39(1): 31-39.
地点 Location | V6-V8叶片 V6-V8 leaf | VT雄穗 VT tassel | R1叶片 R1 leaf | R1花丝 R1 silk | R4叶片 R4 leaf | R4籽粒 R4 kernel |
---|---|---|---|---|---|---|
哈尔滨Harbin | 5.659±1.090 a(ab) | 1.645±0.374 b(b) | 0.956±0.124 b(cd) | 2.425±1.032 b(bcd) | 2.001±0.229 b(e) | 3.035±0.713 b(a) |
长春Changchun | 3.323±0.699 bc(cd) | 2.110±0.336 cd(ab) | 5.823±0.957 a(a) | 1.608±0.239 d(cd) | 4.038±0.119 b(bcde) | 1.802±0.239 cd(bc) |
沈阳Shenyang | 4.084±0.189 bc(c) | 2.731±0.157 c(a) | 5.506±0.949 a(a) | 0.800±0.164 d(d) | 5.435±0.222 ab(abc) | 1.213±0.348 d(bcd) |
廊坊Langfang | 2.099±0.249 cd(de) | 2.874±0.682 bcd(a) | 5.626±0.313 ab(a) | 3.582±1.483 bc(bc) | 6.415±1.394 a(a) | 0.590±0.213 d(d) |
烟台Yantai | 4.660±0.351 a(bc) | 1.926±0.088 b(ab) | 5.182±0.500 a(a) | 3.655±0.672 ab(bc) | 3.226±1.480 ab(cde) | 1.909±0.364 b(b) |
新乡Xinxiang | 1.716±0.269 c(e) | 1.944±0.589 c(ab) | 3.486±0.151 b(b) | 3.184±0.321 b(bcd) | 6.068±0.499 a(ab) | 1.777±0.208 c(bc) |
武汉Wuhan | 3.995±0.510 a(c) | 2.277±0.139 bc(ab) | 2.729±0.316 b(b) | 4.738±0.521 a(ab) | 4.833±0.520 a(abc) | 1.062±0.293 c(bcd) |
贵阳Guiyang | 6.577±0.165 a(a) | 1.804±0.204 cd(ab) | 2.510±0.416 c(bc) | 6.716±0.933 a(a) | 4.347±0.086 b(abcd) | 0.674±0.175 d(d) |
库尔勒Korla | 1.137±0.250 b(e) | 1.235±0.118 b(b) | 0.841±0.186 b(d) | 3.629±1.623 a(bc) | 2.331±0.476 ab(de) | 0.811±0.267 b(cd) |
Table 1 Cry1Ab/Cry2Aj insecticidal protein expressions of Ruifeng 125 in different tissues at different growth stages(2019)
地点 Location | V6-V8叶片 V6-V8 leaf | VT雄穗 VT tassel | R1叶片 R1 leaf | R1花丝 R1 silk | R4叶片 R4 leaf | R4籽粒 R4 kernel |
---|---|---|---|---|---|---|
哈尔滨Harbin | 5.659±1.090 a(ab) | 1.645±0.374 b(b) | 0.956±0.124 b(cd) | 2.425±1.032 b(bcd) | 2.001±0.229 b(e) | 3.035±0.713 b(a) |
长春Changchun | 3.323±0.699 bc(cd) | 2.110±0.336 cd(ab) | 5.823±0.957 a(a) | 1.608±0.239 d(cd) | 4.038±0.119 b(bcde) | 1.802±0.239 cd(bc) |
沈阳Shenyang | 4.084±0.189 bc(c) | 2.731±0.157 c(a) | 5.506±0.949 a(a) | 0.800±0.164 d(d) | 5.435±0.222 ab(abc) | 1.213±0.348 d(bcd) |
廊坊Langfang | 2.099±0.249 cd(de) | 2.874±0.682 bcd(a) | 5.626±0.313 ab(a) | 3.582±1.483 bc(bc) | 6.415±1.394 a(a) | 0.590±0.213 d(d) |
烟台Yantai | 4.660±0.351 a(bc) | 1.926±0.088 b(ab) | 5.182±0.500 a(a) | 3.655±0.672 ab(bc) | 3.226±1.480 ab(cde) | 1.909±0.364 b(b) |
新乡Xinxiang | 1.716±0.269 c(e) | 1.944±0.589 c(ab) | 3.486±0.151 b(b) | 3.184±0.321 b(bcd) | 6.068±0.499 a(ab) | 1.777±0.208 c(bc) |
武汉Wuhan | 3.995±0.510 a(c) | 2.277±0.139 bc(ab) | 2.729±0.316 b(b) | 4.738±0.521 a(ab) | 4.833±0.520 a(abc) | 1.062±0.293 c(bcd) |
贵阳Guiyang | 6.577±0.165 a(a) | 1.804±0.204 cd(ab) | 2.510±0.416 c(bc) | 6.716±0.933 a(a) | 4.347±0.086 b(abcd) | 0.674±0.175 d(d) |
库尔勒Korla | 1.137±0.250 b(e) | 1.235±0.118 b(b) | 0.841±0.186 b(d) | 3.629±1.623 a(bc) | 2.331±0.476 ab(de) | 0.811±0.267 b(cd) |
地点 Location | V6-V8叶片 V6-V8 leaf | VT雄穗 VT tassel | R1叶片 R1 leaf | R1花丝 R1 silk | R4叶片 R4 leaf | R4籽粒 R4 kernel |
---|---|---|---|---|---|---|
哈尔滨Harbin | 4.222±0.540 ab(c) | 1.888±0.046 b(ab) | 3.182±0.297 b(b) | 2.968±0.129 b(bc) | 6.172±1.843 a(ab) | 1.714±0.501 b(a) |
长春Changchun | 4.226±0.358 a(c) | 1.626±0.243 d(b) | 2.876±0.659 bc(b) | 2.041±0.220 cd(d) | 3.443±0.545 ab(c) | 0.326±0.133 e(b) |
沈阳Shenyang | 11.133±0.420 a(a) | 1.970±0.499 d(ab) | 7.164±0.498 b(a) | 1.575±0.163 d(de) | 3.815±0.550 c(bc) | 1.974±0.589 d(a) |
廊坊Langfang | 2.245±0.887 c(d) | 1.404±0.285 c(b) | 4.411±0.586 b(b) | 2.315±0.224 c(cd) | 6.310±0.657 a(a) | 1.025±0.075 c(ab) |
烟台Yantai | 2.494±0.351 bc(d) | 1.808±0.131 c(ab) | 4.495±1.580 ab(b) | 2.285±0.349 bc(cd) | 4.883±0.667 a(abc) | 1.488±0.450 c(a) |
新乡Xinxiang | 6.319±0.317 a(b) | 1.978±0.184 cd(ab) | 3.772±0.142 b(b) | 3.212±0.473 bc(b) | 6.330±0.916 a(a) | 1.311±0.484 d(ab) |
武汉Wuhan | 3.045±0.620 b(cd) | 2.112±0.359 bc(ab) | 4.802±0.126 a(b) | 1.661±0.251 cd(d) | 2.583±0.309 bc(c) | 1.040±0.094 d(ab) |
贵阳Guiyang | 2.483±0.045 b(d) | 2.423±0.101 b(a) | 4.760±1.132 a(b) | 0.762±0.269 c(e) | 4.858±0.456 a(abc) | 1.034±0.113 bc(ab) |
库尔勒Korla | 2.538±0.341 b(d) | 1.804±0.050 bc(ab) | 2.802±0.522 b(b) | 4.486±0.285 a(a) | 4.214±0.425 a(abc) | 0.983±0.277 c(ab) |
Table 2 Cry1Ab/Cry2Aj insecticidal protein expressions of Ruifeng 125 in different tissues at different growth stages(2020)
地点 Location | V6-V8叶片 V6-V8 leaf | VT雄穗 VT tassel | R1叶片 R1 leaf | R1花丝 R1 silk | R4叶片 R4 leaf | R4籽粒 R4 kernel |
---|---|---|---|---|---|---|
哈尔滨Harbin | 4.222±0.540 ab(c) | 1.888±0.046 b(ab) | 3.182±0.297 b(b) | 2.968±0.129 b(bc) | 6.172±1.843 a(ab) | 1.714±0.501 b(a) |
长春Changchun | 4.226±0.358 a(c) | 1.626±0.243 d(b) | 2.876±0.659 bc(b) | 2.041±0.220 cd(d) | 3.443±0.545 ab(c) | 0.326±0.133 e(b) |
沈阳Shenyang | 11.133±0.420 a(a) | 1.970±0.499 d(ab) | 7.164±0.498 b(a) | 1.575±0.163 d(de) | 3.815±0.550 c(bc) | 1.974±0.589 d(a) |
廊坊Langfang | 2.245±0.887 c(d) | 1.404±0.285 c(b) | 4.411±0.586 b(b) | 2.315±0.224 c(cd) | 6.310±0.657 a(a) | 1.025±0.075 c(ab) |
烟台Yantai | 2.494±0.351 bc(d) | 1.808±0.131 c(ab) | 4.495±1.580 ab(b) | 2.285±0.349 bc(cd) | 4.883±0.667 a(abc) | 1.488±0.450 c(a) |
新乡Xinxiang | 6.319±0.317 a(b) | 1.978±0.184 cd(ab) | 3.772±0.142 b(b) | 3.212±0.473 bc(b) | 6.330±0.916 a(a) | 1.311±0.484 d(ab) |
武汉Wuhan | 3.045±0.620 b(cd) | 2.112±0.359 bc(ab) | 4.802±0.126 a(b) | 1.661±0.251 cd(d) | 2.583±0.309 bc(c) | 1.040±0.094 d(ab) |
贵阳Guiyang | 2.483±0.045 b(d) | 2.423±0.101 b(a) | 4.760±1.132 a(b) | 0.762±0.269 c(e) | 4.858±0.456 a(abc) | 1.034±0.113 bc(ab) |
库尔勒Korla | 2.538±0.341 b(d) | 1.804±0.050 bc(ab) | 2.802±0.522 b(b) | 4.486±0.285 a(a) | 4.214±0.425 a(abc) | 0.983±0.277 c(ab) |
Fig. 1 Cry1Ab/Cry2Aj insecticidal protein expressions of Ruifeng 125 in different tissues at different growth stages (1)Cry1Ab/Cry2Aj insecticidal protein content is indicated by the content of Cry1Ab, and its unit as μg/g.(2)Mean ± SE, different lowercase letters indicate significant differences between different column(P<0.05). The same below
[1] | 韩长赋. 玉米论略[J]. 农业经济问题, 2012, 33(6): 4-9, 110. |
Han CF. On the strategy of corn industry[J]. Issues Agric Econ, 2012, 33(6): 4-9, 110. | |
[2] | 李婷婷, 李文娟. 我国玉米空间格局演变及其影响因素研究进展[J]. 中国农业资源与区划, 2021, 42(2): 87-95. |
Li TT, Li WJ. Research progress on the evolition of maize spatial pattern and its influencing factors in China[J]. Chin J Agric Resour Reg Plan, 2021, 42(2): 87-95. | |
[3] | 沈平, 章秋艳, 林友华, 等. 推进我国转基因玉米产业化的思考[J]. 中国生物工程杂志, 2016, 36(4): 24-29. |
Shen P, Zhang QY, Lin YH, et al. Thinking to promote the industrialization of genetically modified corn of our country[J]. China Biotechnol, 2016, 36(4): 24-29. | |
[4] | Liu Q, Hallerman E, Peng Y, et al. Development of Bt rice and Bt maize in China and their efficacy in target pest control[J]. Int J Mol Sci, 2016, 17(10): E1561. |
[5] |
Savary S, Willocquet L, Pethybridge SJ, et al. The global burden of pathogens and pests on major food crops[J]. Nat Ecol Evol, 2019, 3(3): 430-439.
doi: 10.1038/s41559-018-0793-y pmid: 30718852 |
[6] | 刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5): 1-9, 46. |
Liu WC, Liu ZD, Huang C, et al. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years[J]. Plant Prot, 2016, 42(5): 1-9, 46. | |
[7] | 姜玉英, 刘万才, 黄冲, 等. 2018全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2018, 38(2): 26-31. |
Jiang YY, Liu WC, Huang C, et al. Occurrence trend forecast of major diseases and insect pests of grain crops in China in 2021[J]. China Plant Prot, 2018, 38(2): 26-31. | |
[8] | 王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策[J]. 植物保护, 2019, 45(1): 1-11. |
Wang ZY, Wang XM. Current status and management strategies for corn pests and diseases in China[J]. Plant Prot, 2019, 45(1): 1-11. | |
[9] | 常雪, 王伟, 沈志成, 等. 转cry1Ab/cry2Aj玉米对亚洲玉米螟的抗性评价[J]. 植物保护学报, 2013, 40(4): 339-344. |
Chang X, Wang W, Shen ZC, et al. Evaluation of transgenic cry1Ab/cry2Aj maize for its resistance to Ostrinia furnacalis[J]. J Plant Prot, 2013, 40(4): 339-344. | |
[10] | 孙丹丹, 全玉东, 王月琴, 等. 转Bt基因玉米(瑞丰125、DBN9936、DBN9978)对亚洲玉米螟的抗虫效果研究[J]. 植物保护, 2021, 47(3): 206-211. |
Sun DD, Quan YD, Wang YQ, et al. Resistance of transgenic Bt maize(Ruifeng 125, DBN9936 & DBN9978)to Asian corn borer[J]. Plant Prot, 2021, 47(3): 206-211. | |
[11] | 孙红炜, 李凡, 高瑞, 等. 转cry1Ab/cry2Aj和G10evo-epsps基因玉米中Bt蛋白的时空表达及抗性评价[J]. 生物安全学报, 2018, 27(1): 63-68. |
Sun HW, Li F, Gao R, et al. Bt protein spatial-temporal expression and evaluation for resistance of transgenic cry1Ab/cry2Aj and G10evo-epsps maize[J]. J Biosaf, 2018, 27(1): 63-68. | |
[12] | 黎裕, 王天宇. 玉米转基因技术研发与应用现状及展望[J]. 玉米科学, 2018, 26(2): 1-15, 22. |
Li Y, Wang TY. Germplasm enhancement in maize: advances and prospects[J]. J Maize Sci, 2018, 26(2): 1-15, 22. | |
[13] | 宋伟彬, 赵海铭, 杨爽, 等. 2016年度中国玉米生物学研究进展[J]. 玉米科学, 2017, 25(3): 1-10. |
Song WB, Zhao HM, Yang S, et al. Research progress on the maize biology in China in 2016[J]. J Maize Sci, 2017, 25(3): 1-10. | |
[14] | ISAAA. Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio economic development and sustainable environment in the new frontier[M]. Ithaca, NY: ISAAA, 2019. |
[15] |
焦悦, 韩宇, 杨桥, 等. 全球转基因玉米商业化发展态势概述及启示[J]. 生物技术通报, 2021, 37(4): 164-176.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803 |
Jiao Y, Han Y, Yang Q, et al. Commercialization development trend of genetically modified maize and the enlightenment[J]. Biotechnol Bull, 2021, 37(4): 164-176.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803 |
|
[16] | 李国平, 吴孔明. 中国转基因抗虫玉米的商业化策略[J]. 植物保护学报, 2022, 49(1): 17-32. |
Li GP, Wu KM. Commercial strategy of transgenic insect-resistant maize in China[J]. J Plant Prot, 2022, 49(1): 17-32. | |
[17] | 白耀宇, 蒋明星, 程家安. Bt水稻Cry1Ab杀虫蛋白表达的时间动态及其在水稻土中的降解[J]. 生态学报, 2005, 25(7): 1583-1590. |
Bai YY, Jiang MX, Cheng JA. Temporal expression patterns of Cry1Ab insecticidal protein in Bt rice plants and its degradation in paddy soils[J]. Acta Ecol Sin, 2005, 25(7): 1583-1590. | |
[18] | 姜志磊, 刘德璞, 李晓辉, 等. 转基因抗虫玉米Bt毒蛋白的时空表达分析[J]. 吉林农业科学, 2008, 33(6): 35-37. |
Jiang ZL, Liu DP, Li XH, et al. Studies on the temporal and spatial expressions of Bt toxin protein of Bt transgenic maize[J]. J Jilin Agric Sci, 2008, 33(6): 35-37. | |
[19] | 王冬梅, 李海强, 丁瑞丰, 等. 新疆北部地区转Bt基因棉外源杀虫蛋白表达时空动态研究[J]. 棉花学报, 2012, 24(1): 18-26. |
Wang DM, Li HQ, Ding RF, et al. Spatio-temporal expression of foreign Bt insecticidal protein in transgenic Bt cotton varieties in northern Xinjiang Province, China[J]. Cotton Sci, 2012, 24(1): 18-26. | |
[20] | 翁绿水, 王作平, 肖国樱. 转基因水稻B2A68中抗虫蛋白Cry2Aa的表达特征和抗性分析[J]. 农业生物技术学报, 2018, 26(5): 756-763. |
Weng LS, Wang ZP, Xiao GY. Expression profile of insecticidal protein Cry2Aa and lepidopteran resistance in transgenic rice(Oryza sativa)B2A68[J]. J Agric Biotechnol, 2018, 26(5): 756-763. | |
[21] |
Székács A, Lauber E, Juracsek J, et al. Cry1Ab toxin production of MON 810 transgenic maize[J]. Environ Toxicol Chem, 2010, 29(1): 182-190.
doi: 10.1002/etc.5 pmid: 20821434 |
[22] | 王军辉, 王念, 张建国, 张守攻. 转Bt基因植物中外源基因时空动态表达的研究现状[J]. 生物技术通报, 2004(2): 1-4, 18. |
Wang JH, Wang N, Zhang JG, et al. Current status in spatio-temporal expression of the insecticidal protein gene Bt in the transgenic plants[J]. Biotechnol Inf, 2004(2): 1-4, 18. | |
[23] |
Zhang B, Yang Y, Zhou X, et al. A laboratory assessment of the potential effect of Cry1Ab/Cry2Aj-containing Bt maize pollen on Folsomia candida by toxicological and biochemical analyses[J]. Environ Pollut, 2017, 222: 94-100.
doi: S0269-7491(16)31428-2 pmid: 28082132 |
[24] | Bilbo TR, Reay-Jones FPF, Reisig DD, et al. Development, survival, and feeding behavior of Helicoverpa zea(Lepidoptera: Noctuidae)relative to Bt protein concentrations in corn ear tissues[J]. PLoS One, 2019, 14(8): e0221343. |
[25] |
Liang JG, Zhang DD, Li DY, et al. Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936[J]. J Integr Agric, 2021, 20(3): 792-803.
doi: 10.1016/S2095-3119(20)63475-X URL |
[26] | Trtikova M, Wikmark OG, Zemp N, et al. Transgene expression and Bt protein content in transgenic Bt maize(MON810)under optimal and stressful environmental conditions[J]. PLoS One, 2015, 10(4): e0123011. |
[27] | Liu YJ, Wang GY. The inheritance and expression of cry1A gene in transgenic maize[J]. Acta Bot Sin, 2003, 45(3): 253-256. |
[28] |
Darvas B, Bánáti H, Takács E, et al. Relationships of Helicoverpa armigera, Ostrinia nubilalis and Fusarium verticillioides on MON 810 maize[J]. Insects, 2011, 2(1): 1-11.
doi: 10.3390/insects2010001 pmid: 26467495 |
[29] | 王家宝, 王留明, 沈法富, 等. 环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响[J]. 山东农业科学, 2000, 32(6): 4-6. |
Wang JB, Wang LM, Shen FF, et al. Effect of environment elements on Bt-protein content in transgenic Bt cotton[J]. Shandong Agric Sci, 2000, 32(6): 4-6. | |
[30] |
Marquardt PT, Krupke CH, Camberato JJ, et al. The effect of nitrogen rate on transgenic corn Cry3Bb1 protein expression[J]. Pest Manag Sci, 2014, 70(5): 763-770.
doi: 10.1002/ps.3611 pmid: 23868342 |
[31] |
Griffiths BS, Caul S, Thompson J, et al. Soil microbial and faunal community responses to bt maize and insecticide in two soils[J]. J Environ Qual, 2006, 35(3): 734-741.
pmid: 16585615 |
[32] | 张丹丹, 吴孔明. 国产Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米对草地贪夜蛾的抗性测定[J]. 植物保护, 2019, 45(4): 54-60. |
Zhang DD, Wu KM. The bioassay of Chinese domestic Bt-Cry1Ab and Bt-(Cry1Ab+Vip3Aa)maize against the fall armyworm, Spodoptera frugiperda[J]. Plant Prot, 2019, 45(4): 54-60. | |
[33] | 吴孔明. 中国草地贪夜蛾的防控策略[J]. 植物保护, 2020, 46(2): 1-5. |
Wu KM. Management strategies of fall armyworm(Spodoptera frugiperda)in China[J]. Plant Prot, 2020, 46(2): 1-5. | |
[34] |
Bates SL, Zhao JZ, Roush RT, et al. Insect resistance management in GM crops: past, present and future[J]. Nat Biotechnol, 2005, 23(1): 57-62.
pmid: 15637622 |
[35] | 张谦, 郭芳, 梁革梅, 等. 转基因棉花主要靶标害虫的抗性发展及抗性治理策略研究[J]. 环境昆虫学报, 2010, 32(2): 256-263. |
Zhang Q, Guo F, Liang GM, et al. Research progress of the development of resistance of target insects and resistance management strategy[J]. J Environ Entomol, 2010, 32(2): 256-263.
doi: 10.1603/0046-225X-32.2.256 URL |
|
[36] | 王月琴, 何康来, 王振营. 靶标害虫对Bt玉米的抗性发展和治理策略[J]. 应用昆虫学报, 2019, 56(1): 12-23. |
Wang YQ, He KL, Wang ZY. Evolution of resistance to transgenic Bacillus thuringiensis maize in pest insects and a strategy for managing this[J]. Chin J Appl Entomol, 2019, 56(1): 12-23. | |
[37] |
Carrière Y, Crowder DW, Tabashnik BE. Evolutionary ecology of insect adaptation to Bt crops[J]. Evol Appl, 2010, 3(5/6): 561-573.
doi: 10.1111/j.1752-4571.2010.00129.x URL |
[38] | Reisig DD, Kurtz R. Bt resistance implications for Helicoverpa zea(Lepidoptera: Noctuidae)insecticide resistance management in the United States[J]. Environ Entomol, 2018, 47(6): 1357-1364. |
[39] | 何康来, 王振营. 草地贪夜蛾对Bt玉米的抗性与治理对策思考[J]. 植物保护, 2020, 46(3): 1-15. |
He KL, Wang ZY. Resistance evolution to Bt maize in the fall armyworm and consideration on IRM strategy in China[J]. Plant Prot, 2020, 46(3): 1-15. | |
[40] | U.S. Environmental Protection Agency(US EPA). Insect resistance management for Bt plant-incorporated protectants[EB/OL].(2021-12-01)[2022-09-01]. https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/insect-resistance-management-bt-plant-incorporated. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||