Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 107-115.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0568
Previous Articles Next Articles
PANG Qiang-qiang1,2,3(), SUN Xiao-dong1,2,3(), ZHOU Man1,2,3, CAI Xing-lai1,2,3, ZHANG Wen1,2,3, WANG Ya-qiang1,2,3
Received:
2022-05-09
Online:
2023-02-26
Published:
2023-03-07
PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress[J]. Biotechnology Bulletin, 2023, 39(2): 107-115.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物用途Primer purpose |
---|---|---|
BrHsfA3-F1 | CGCCAGAATCATACTCCCGC | 基因合成 Gene synthesis |
BrHsfA3-R1 | CCTTAGAGGACAGAAGCATC | 基因合成 Gene synthesis |
BrHsfA3-F2 | GATGTGCTGCAAGGCGATTA | 基因合成 Gene synthesis |
BrHsfA3-R2 | TTATGCTTCCGGCTCGTATG | 基因合成 Gene synthesis |
BrActin-F | AGCAACTGGGATGACATGGA | RT-qPCR内参基因 RT-qPCR reference genes |
BrActin-R | TCACCAGAGTCGAGCACAAT | RT-qPCR内参基因RT-qPCR reference genes |
Q-BrHsfA3-F | GTCGACATAACAGACGTGGC | RT-qPCR |
Q-BrHsfA3-R | CTGTCTGACGAAGCTGGAGA | RT-qPCR |
Table 1 Primers used for gene cloning and expression analysis
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物用途Primer purpose |
---|---|---|
BrHsfA3-F1 | CGCCAGAATCATACTCCCGC | 基因合成 Gene synthesis |
BrHsfA3-R1 | CCTTAGAGGACAGAAGCATC | 基因合成 Gene synthesis |
BrHsfA3-F2 | GATGTGCTGCAAGGCGATTA | 基因合成 Gene synthesis |
BrHsfA3-R2 | TTATGCTTCCGGCTCGTATG | 基因合成 Gene synthesis |
BrActin-F | AGCAACTGGGATGACATGGA | RT-qPCR内参基因 RT-qPCR reference genes |
BrActin-R | TCACCAGAGTCGAGCACAAT | RT-qPCR内参基因RT-qPCR reference genes |
Q-BrHsfA3-F | GTCGACATAACAGACGTGGC | RT-qPCR |
Q-BrHsfA3-R | CTGTCTGACGAAGCTGGAGA | RT-qPCR |
Fig. 6 Prediction of BrHsfA3 protein secondary structure Horizontal axis indicates amino acid position. The blue part indicates alpha helix. The purple indicates random coil. The red part indicates extended strand. The green part indicates beta turn
Fig. 9 FPKM value of BrHsfA3 gene under heat stress Different lowercase letters of the same inbred indicate significant difference(P<0.05),the same below
[1] | 陈汉才, 吴增祥, 林悦欣, 等. 广东菜心、芥蓝研究现状与展望[J]. 广东农业科学, 2021, 48(9):62-71. |
Chen HC, Wu ZX, Lin YX, et al. Research status and prospect of flowering Chinese cabbage and Chinese kale in Guangdong[J]. Guangdong Agric Sci, 2021, 48(9):62-71. | |
[2] | 刘畅. 高温涝渍对菜心农艺性状和生理特性影响的研究[D]. 广州: 广州大学, 2020. |
Liu C. Effect of high temperature and waterlogging on agronomic and physiological traits in flowering Chinese cabbage[D]. Guangzhou: Guangzhou University, 2020. | |
[3] | 陈连珠, 张雪彬, 杨小锋. 根际高温对菜心生长及光合生理的影响[J]. 北方园艺, 2020(14):50-55. |
Chen LZ, Zhang XB, Yang XF. Effects of rhizosphere high temperature on growth and photosynthetic physiology of Chinese flowering cabbages[J]. North Hortic, 2020(14):50-55. | |
[4] |
Yue YZ, Jiang HY, Du JH, et al. Variations in physiological response and expression profiles of proline metabolism-related genes and heat shock transcription factor genes in Petunia subjected to heat stress[J]. Sci Hortic, 2019, 258:108811.
doi: 10.1016/j.scienta.2019.108811 URL |
[5] | 司修洋, 梁文杰, 罗澜, 等. 甜瓜热激转录因子(Hsf)基因家族鉴定及生物信息学分析[J]. 中国蔬菜, 2020(11):23-32. |
Si XY, Liang WJ, Luo L, et al. Identification and bioinformatics analysis of heat shock transcription factor(Hsf)gene family in melon[J]. China Veg, 2020(11):23-32. | |
[6] |
Huang B, Huang ZN, Ma RF, et al. Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo(Phyllostachys edulis)[J]. Sci Rep, 2021, 11(1):16492.
doi: 10.1038/s41598-021-95899-3 pmid: 34389742 |
[7] |
Shen CW, Yuan JP. Genome-wide characterization and expression analysis of the heat shock transcription factor family in pumpkin(Cucurbita moschata)[J]. BMC Plant Biol, 2020, 20:471.
doi: 10.1186/s12870-020-02683-y URL |
[8] |
Li MY, Xie FJ, Li YW, et al. Genome-wide analysis of the heat shock transcription factor gene family in Brassica juncea:structure, evolution, and expression profiles[J]. DNA Cell Biol, 2020, 39(11):1990-2004.
doi: 10.1089/dna.2020.5922 URL |
[9] |
Zhang Q, Geng J, Du YL, et al. Heat shock transcription factor(Hsf)gene family in common bean(Phaseolus vulgaris):genome-wide identification, phylogeny, evolutionary expansion and expression analyses at the sprout stage under abiotic stress[J]. BMC Plant Biol, 2022, 22(1):33.
doi: 10.1186/s12870-021-03417-4 pmid: 35031009 |
[10] |
Zhou M, Zheng SG, Liu R, et al. Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat(Triticum aestivum L.)[J]. BMC Genomics, 2019, 20(1):505.
doi: 10.1186/s12864-019-5876-x pmid: 31215411 |
[11] |
Wiederrecht G, Seto D, Parker CS. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor[J]. Cell, 1988, 54(6):841-853.
doi: 10.1016/s0092-8674(88)91197-x pmid: 3044612 |
[12] |
Scharf KD, Rose S, Zott W, et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. EMBO J, 1990, 9(13):4495-4501.
doi: 10.1002/j.1460-2075.1990.tb07900.x pmid: 2148291 |
[13] | Sanmiya K, Koja Y, Iguchi A. The cloning of cDNAs for the heat-shock transcription factors HSFA1, HSFA2 and HSFA3 from tobacco[J]. Trop Agric Dev, 2020, 64:34-40. |
[14] |
Wu Z, Liang JH, Wang CP, et al. Alternative splicing provides a mechanism to regulate LlHSFA3 function in response to heat stress in lily[J]. Plant Physiol, 2019, 181(4):1651-1667.
doi: 10.1104/pp.19.00839 URL |
[15] |
唐锐敏, 贾小云, 朱文娇, 等. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4):672-683.
doi: 10.3724/SP.J.1006.2021.04114 |
Tang RM, Jia XY, Zhu WJ, et al. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance[J]. Acta Agron Sin, 2021, 47(4):672-683.
doi: 10.3724/SP.J.1006.2021.04114 URL |
|
[16] |
Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature[J]. Plant Physiol, 2008, 146(2):748-761.
doi: 10.1104/pp.107.112060 pmid: 18055584 |
[17] |
Chen H, Hwang JE, Lim CJ, et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochem Biophys Res Commun, 2010, 401(2):238-244.
doi: 10.1016/j.bbrc.2010.09.038 URL |
[18] |
Li ZJ, Zhang LL, Wang AX, et al. Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis[J]. PLoS One, 2013, 8(1):e54880.
doi: 10.1371/journal.pone.0054880 URL |
[19] |
Zhu MD, Zhang M, Gao DJ, et al. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels[J]. Int J Mol Sci, 2020, 21(5):1857.
doi: 10.3390/ijms21051857 URL |
[20] |
Mittal D, Chakrabarti S, Sarkar A, et al. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiol Biochem, 2009, 47(9):785-795.
doi: 10.1016/j.plaphy.2009.05.003 URL |
[21] | 吴泽. 百合热激转录因子LlHsfA3调控耐热性和耐盐性的机制解析[D]. 北京: 中国农业大学, 2018. |
Wu Z. Analysis of thermotolerance and salt tolerance mechanism regulated by heat shock transcription factor LlHsfA3 from lily(Lili-um longiflorum)[D]. Beijing: China Agricultural University, 2018. | |
[22] |
Song C, Chung WS, Lim CO. Overexpression of heat shock factor gene HsfA3 increases galactinol levels and oxidative stress tolerance in Arabidopsis[J]. Mol Cells, 2016, 39(6):477-483.
doi: 10.14348/molcells.2016.0027 URL |
[23] | 庞强强, 孙晓东, 周曼, 等. 一种菜心耐热性评价方法:CN113348992A[P]. 2021-09-07. |
Pang QQ, Sun XD, Zhou M, et al. A method for evaluating heat resistance of Chinese flowering cabbage:CN113348992A[P]. 2021-09-07. | |
[24] | 庞强强, 周曼, 孙晓东, 等. 不同菜心品种萌发期和苗期耐热性分析及其鉴定指标筛选[J]. 西北农业学报, 2020, 29(2):295-305. |
Pang QQ, Zhou M, Sun XD, et al. Comprehensive evaluation and indexes screening of heat tolerance at germination and seedling stages in different cultivars of Chinese flowering cabbage[J]. Acta Agric Boreali Occidentalis Sin, 2020, 29(2):295-305. | |
[25] |
庞强强, 周曼, 孙晓东, 等. 菜心耐热性评价及酶促抗氧化系统对高温胁迫的响应[J]. 浙江农业学报, 2020, 32(1):72-79.
doi: 10.3969/j.issn.1004-1524.2020.01.09 |
Pang QQ, Zhou M, Sun XD, et al. Evaluation of heat tolerance and response of enzymatic antioxidant system to heat stress in Brassica parachinensis L[J]. Acta Agric Zhejiangensis, 2020, 32(1):72-79. | |
[26] | 卢宇鹏. 菜心耐热性评价及耐热基因等位变异分析[D]. 广州: 广州大学, 2020. |
Lu YP. Evaluation of heat tolerance and analysis of allele variation of heat tolerance candidate gene in flowering Chinese cabbage[D]. Guangzhou: Guangzhou University, 2020. | |
[27] |
Rao S, Das JR, Mathur S. Exploring the master regulator heat stress transcription factor HSFA1a-mediated transcriptional cascade of HSFs in the heat stress response of tomato[J]. J Plant Biochem Biotechnol, 2021, 30(4):878-888.
doi: 10.1007/s13562-021-00696-8 URL |
[28] |
Meena S, Samtani H, Khurana P. Elucidating the functional role of heat stress transcription factor A6b(TaHsfA6b)in linking heat stress response and the unfolded protein response in wheat[J]. Plant Mol Biol, 2022, 108(6):621-634.
doi: 10.1007/s11103-022-01252-1 URL |
[29] |
刘栩铭, 李敏, 段琼, 等. 蓖麻RcHSF基因家族鉴定与冷胁迫下的表达模式分析[J]. 华北农学报, 2020, 35(5):62-71.
doi: 10.7668/hbnxb.20191312 |
Liu XM, Li M, Duan Q, et al. Identification of RcHSF gene family in castor and analysis of expression pattern under cold stress[J]. Acta Agric Boreali Sin, 2020, 35(5):62-71. | |
[30] |
Guo M, Lu JP, Zhai YF, et al. Genome-wide analysis, expression profile of heat shock factor gene family(CaHsfs)and characterisation of CaHsfA2 in pepper(Capsicum annuum L.)[J]. BMC Plant Biol, 2015, 15:151.
doi: 10.1186/s12870-015-0512-7 URL |
[31] |
Rehman A, Atif RM, Azhar MT, et al. Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons(Gossypium spp. )[J]. Int J Biol Macromol, 2021, 182:1507-1527.
doi: 10.1016/j.ijbiomac.2021.05.016 pmid: 33965497 |
[32] | 张楠, 王映红, 王志敏, 等. 植物热激转录因子家族的研究进展[J]. 生物工程学报, 2021, 37(4):1155-1167. |
Zhang N, Wang YH, Wang ZM, et al. Heat shock transcription factor family in plants:a review[J]. Chin J Biotechnol, 2021, 37(4):1155-1167. | |
[33] | 焦淑珍, 姚文孔, 张宁波, 等. 园艺植物热激转录因子研究进展[J]. 果树学报, 2020, 37(3):419-430. |
Jiao SZ, Yao WK, Zhang NB, et al. Research progress of heat stress transcription factors(Hsfs)in horticultural plants[J]. J Fruit Sci, 2020, 37(3):419-430. | |
[34] | Schramm F, Larkindale J, Kiehlmann E, et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis[J]. The Plant Jouranl, 2008, 53(2):264-274. |
[35] |
Yoshida T, Sakuma Y, Todaka D, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system[J]. Biochem Biophys Res Commun, 2008, 368(3):515-521.
doi: 10.1016/j.bbrc.2008.01.134 URL |
[36] | 孙天晓. 多年生黑麦草热激转录因子HSFAs和HSFCs亚家族基因的功能研究[D]. 武汉: 华中农业大学, 2021. |
Sun TX. Function of heat shock transcription factor HSFAs and HSFCs subfamily genes in perennial ryegrass[D]. Wuhan: Huazhong Agricultural University, 2021. | |
[37] |
Zhu XY, Huang CQ, Zhang L, et al. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses[J]. Front Plant Sci, 2017, 8:1174.
doi: 10.3389/fpls.2017.01174 URL |
[38] | 庞强强. 茄子HSFs和HSPs基因鉴定及其在高温下的表达模式分析[D]. 广州: 华南农业大学, 2016. |
Pang QQ. Genome wide identification of HSFs and HSPs gene family in eggplant(Solanum melongema L.)and analysis of their expression pattern under high temperature[D]. Guangzhou: South China Agricultural University, 2016. |
[1] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[2] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[3] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[4] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[5] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[6] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[7] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[8] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[9] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[10] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
[11] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
[12] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[13] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
[14] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[15] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||