Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (8): 165-172.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1402
Previous Articles Next Articles
HE Yu-hang1,2(), HU Tao1,2, WU Zhen1,2,3, HE Yu1,2,3, CHENG An-chun1,2,3, CHEN Shun1,2,3()
Received:
2022-11-15
Online:
2023-08-26
Published:
2023-09-05
Contact:
CHEN Shun
E-mail:1264953641@qq.com;shunchen@sicau.edu.cn
HE Yu-hang, HU Tao, WU Zhen, HE Yu, CHENG An-chun, CHEN Shun. Establishment of YFV17D Non-infectious Reporter Replicon and Pseudovirus Packaging System[J]. Biotechnology Bulletin, 2023, 39(8): 165-172.
Fig. 2 Fluorescent protein expression of the YFV17D reporter replicon in BHK-21 cells A: Nluc luciferase activity assay, ****P<0.000 1. B: Fluorescent protein expression; (a)YFV17D-mCherry-rep transfection panel.(b)YFV17D-oxGFP-rep transfection panel; replication-defective replicons were used as negative controls
Fig. 3 RNA replication of YFV17D replicon in BHK-21 cells A: YFV17D-mCherry-rep transfection panel; B: YFV17D-oxGFP-rep transfection panel; C: YFV17D-mCherry-rep transfection panel; replication-defective replicons were used as negative controls
Fig. 4 Establishment of the YFV17D packaging system A: Schematic diagram of packaging plasmid construction.B: Schematic presentation of the experimental procedure used for the production of SRIPs. C: Detection of Nluc luciferase activity after SRIPs infection of BHK-21 cells, ****P<0.000 1. D: Fluorescent protein expression after SRIPs infection of BHK-21 cells(a)YFV17D-oxGFP-rep transfection panel;(b)YFV17D-mCherry-rep transfection panel(C: pcDNA3.1-CprME; C28: pcDNA3.1-C28prME)
[1] |
Bredenbeek PJ, Kooi EA, Lindenbach B, et al. A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication[J]. J Gen Virol, 2003, 84(5): 1261-1268.
doi: 10.1099/vir.0.18860-0 URL |
[2] |
Beck AS, Barrett ADT. Current status and future prospects of yellow fever vaccines[J]. Expert Rev Vaccines, 2015, 14(11): 1479-1492.
doi: 10.1586/14760584.2015.1083430 pmid: 26366673 |
[3] |
Theiler M, Smith HH. The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus[J]. J Exp Med, 1937, 65(6): 767-786.
doi: 10.1084/jem.65.6.767 pmid: 19870633 |
[4] |
Danet L, Beauclair G, Berthet M, et al. Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti[J]. PLoS Negl Trop Dis, 2019, 13(8): e0007299.
doi: 10.1371/journal.pntd.0007299 URL |
[5] |
Kümmerer BM. Establishment and application of Flavivirus replicons[J]. Adv Exp Med Biol, 2018, 1062: 165-173.
doi: 10.1007/978-981-10-8727-1_12 pmid: 29845532 |
[6] |
Jones CT, Patkar CG, Kuhn RJ. Construction and applications of yellow fever virus replicons[J]. Virology, 2005, 331(2): 247-259.
pmid: 15629769 |
[7] | Junglen S, Korries M, Grasse W, et al. Host range restriction of insect-specific flaviviruses occurs at several levels of the viral life cycle[J]. mSphere, 2017, 2(1): e00375-e00316. |
[8] |
He Y, Liu P, Wang T, et al. Genetically stable reporter virus, subgeno-mic replicon and packaging system of duck Tembusu virus based on a reverse genetics system[J]. Virology, 2019, 533: 86-92.
doi: 10.1016/j.virol.2019.05.003 URL |
[9] |
Ansarah-Sobrinho C, Nelson S, et al. Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation[J]. Virology, 2008, 381(1): 67-74.
doi: 10.1016/j.virol.2008.08.021 pmid: 18801552 |
[10] |
Harvey TJ, Liu WJ, Wang XJ, et al. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles[J]. J Virol, 2004, 78(1): 531-538.
pmid: 14671135 |
[11] |
Puig-Basagoiti F, Tilgner M, Forshey BM, et al. Triaryl pyrazoline compound inhibits flavivirus RNA replication[J]. Antimicrob Agents Chemother, 2006, 50(4): 1320-1329.
pmid: 16569847 |
[12] |
Khromykh AA, Varnavski AN, Westaway EG. Encapsidation of the flavivirus Kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans[J]. J Virol, 1998, 72(7): 5967-5977.
pmid: 9621059 |
[13] |
Hu T, Wu Z, Wu SX, et al. Substitutions at loop regions of TMUV E protein domain III differentially impair viral entry and assembly[J]. Front Microbiol, 2021, 12: 688172.
doi: 10.3389/fmicb.2021.688172 URL |
[14] |
Ma X, Yuan ZH, Yi ZG. Identification and characterization of key residues in Zika virus envelope protein for virus assembly and entry[J]. Emerg Microbes Infect, 2022, 11(1): 1604-1620.
doi: 10.1080/22221751.2022.2082888 URL |
[15] | Sangiambut S, Promphet N, Chaiyaloom S, et al. Increased capsid oligomerization is deleterious to dengue virus particle production[J]. J Gen Virol, 2021, 102(8). |
[16] |
Tran PTH, Asghar N, Höglund U, et al. Development of a multivalent Kunjin virus reporter virus-like particle system inducing seroconversion for Ebola and west Nile virus proteins in mice[J]. Microorganisms, 2020, 8(12): 1890.
doi: 10.3390/microorganisms8121890 URL |
[17] |
Boyer JC, Haenni AL. Infectious transcripts and cDNA clones of RNA viruses[J]. Virology, 1994, 198(2): 415-426.
pmid: 8291226 |
[18] |
Varnavski AN, Young PR, Khromykh AA. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors[J]. J Virol, 2000, 74(9): 4394-4403.
doi: 10.1128/jvi.74.9.4394-4403.2000 pmid: 10756054 |
[19] |
Urosevic N, van Maanen M, et al. Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and-resistant mice after challenge with Murray Valley encephalitis virus[J]. J Gen Virol, 1997, 78(Pt 1): 23-29.
doi: 10.1099/0022-1317-78-1-23 URL |
[20] |
Saeedi BJ, Geiss BJ. Regulation of flavivirus RNA synthesis and capping[J]. WIREs RNA, 2013, 4(6): 723-735.
doi: 10.1002/wrna.1191 pmid: 23929625 |
[21] |
Rice CM, Grakoui A, Galler R, et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation[J]. New Biol, 1989, 1(3): 285-296.
pmid: 2487295 |
[22] |
Pu SY, Wu RH, Yang CC, et al. Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes[J]. J Virol, 2011, 85(6): 2927-2941.
doi: 10.1128/JVI.01986-10 URL |
[23] |
da Silva Santos JJ, Cordeiro MT, et al. Construction and characterisation of a complete reverse genetics system of dengue virus type 3[J]. Mem Inst Oswaldo Cruz, 2013, 108(8): 983-991.
doi: 10.1590/0074-0276130298 URL |
[24] | Schwarz MC, Sourisseau M, Espino MM, et al. Rescue of the 1947 zika virus prototype strain with a Cytomegalovirus promoter-driven cDNA clone[J]. mSphere, 2016, 1(5): e00246-e00216. |
[25] | Widman DG, Young E, Yount BL, et al. A reverse genetics platform that spans the zika virus family tree[J]. mBio, 2017, 8(2): e02014-e02016. |
[26] |
Aubry F, Nougairède A, Gould EA, et al. Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective[J]. Antiviral Res, 2015, 114: 67-85.
doi: 10.1016/j.antiviral.2014.12.007 URL |
[27] |
Tamura T, Zhang JY, Madan V, et al. Generation and characterization of genetically and antigenically diverse infectious clones of dengue virus serotypes 1-4[J]. Emerg Microbes Infect, 2022, 11(1): 227-239.
doi: 10.1080/22221751.2021.2021808 URL |
[28] |
Wang XL, He Y, Guo JQ, et al. Construction of an infectious clone for mosquito-derived tembusu virus prototypical strain[J]. Virol Sin, 2021, 36(6): 1678-1681.
doi: 10.1007/s12250-021-00447-y pmid: 34570343 |
[29] |
Guo JQ, He Y, Wang L, et al. Stabilization of a full-length infectious cDNA clone for duck Tembusu virus by insertion of an intron[J]. J Virol Methods, 2020, 283: 113922.
doi: 10.1016/j.jviromet.2020.113922 URL |
[30] |
Khromykh AA, Westaway EG. Subgenomic replicons of the flavivirus Kunjin: construction and applications[J]. J Virol, 1997, 71(2): 1497-1505.
pmid: 8995675 |
[31] |
Roby JA, Bielefeldt-Ohmann H, Prow NA, et al. Increased expression of capsid protein in trans enhances production of single-round infectious particles by West Nile virus DNA vaccine candidate[J]. J Gen Virol, 2014, 95(Pt 10): 2176-2191.
doi: 10.1099/vir.0.064121-0 pmid: 24958626 |
[32] |
Chang DC, Liu WJ, Anraku I, et al. Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus[J]. Nat Biotechnol, 2008, 26(5): 571-577.
doi: 10.1038/nbt1400 pmid: 18425125 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||