Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (12): 170-181.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0412
Previous Articles Next Articles
XU Yan-jiao1,2,3,4(
), HONG Kai-yun1,2,3, LU Yi-wang1,2,3, WANG Chang-qing1,2,3, LIANG Yan-li1,2,3, HE Si-mei1,2,3(
)
Received:2024-04-30
Online:2024-12-26
Published:2025-01-15
Contact:
HE Si-mei
E-mail:1191556757@qq.com;simeiheynau@163.com
XU Yan-jiao, HONG Kai-yun, LU Yi-wang, WANG Chang-qing, LIANG Yan-li, HE Si-mei. Function Verification of Genes Involved in 22 (R)-hydroxycholesterol Biosynthesis in Veratrum nigrum and Their Heterologous Synthesis[J]. Biotechnology Bulletin, 2024, 40(12): 170-181.
| 基因 Gene | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
|---|---|---|
| ACT | CGAGAGCAATGTACGCAAGC GGTGTCAGCCATACTGTCCC | 实时荧光定量 PCR RT-qPCR |
| VnigCYP063 | GTCGATCCCCATCAACTTGC ACTCGAGGAAGTAGATGGCG | |
| VnigCYP106 | ACGTGGTTAGGTTTGTGCAC TCCACGGATCGAACTGTTGA | |
| VnigCYP119 | TCAGGGCGGTACATATGGAC CAACTTGGCGAGCTCAGATC | |
| Y33-VnigCYP063 | cagtcgacctcgaatctagaATGGCGATGGAGCTCCTC catgatgcggccctctagaTCAGTCCCCGAGTTTTTCGAG | 基因克隆 Gene clone |
| Y33-VnigCYP106 | cagtcgacctcgaatctagaATGTCGACAATAAGAGAGCTACTC acatgatgcggccctctagaTCATGTTACGGCGCGAACCTTG | |
| Y33-VnigCYP119 | cagtcgacctcgaatctagaATGGAACCTGTGGCGATTCTAC acatgatgcggccctctagaCTACATCATCTCCATCTCATTTGGC |
Table 1 Sequences of RT-qPCR primers and gene cloning primers
| 基因 Gene | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
|---|---|---|
| ACT | CGAGAGCAATGTACGCAAGC GGTGTCAGCCATACTGTCCC | 实时荧光定量 PCR RT-qPCR |
| VnigCYP063 | GTCGATCCCCATCAACTTGC ACTCGAGGAAGTAGATGGCG | |
| VnigCYP106 | ACGTGGTTAGGTTTGTGCAC TCCACGGATCGAACTGTTGA | |
| VnigCYP119 | TCAGGGCGGTACATATGGAC CAACTTGGCGAGCTCAGATC | |
| Y33-VnigCYP063 | cagtcgacctcgaatctagaATGGCGATGGAGCTCCTC catgatgcggccctctagaTCAGTCCCCGAGTTTTTCGAG | 基因克隆 Gene clone |
| Y33-VnigCYP106 | cagtcgacctcgaatctagaATGTCGACAATAAGAGAGCTACTC acatgatgcggccctctagaTCATGTTACGGCGCGAACCTTG | |
| Y33-VnigCYP119 | cagtcgacctcgaatctagaATGGAACCTGTGGCGATTCTAC acatgatgcggccctctagaCTACATCATCTCCATCTCATTTGGC |
Fig. 4 Analysis of gene expression pattern of cholesterol C-22 hydroxylase A : TPM value of transcriptome expression ; B: qPCR expression,(**P<0.01,*P<0.05)
Fig. 5 Agarose gel electrophoresis of V. nigrum RNA and gene amplification A : 1, 2 : root ; 3, 4 : leaf ; B : 1 : VnigCYP063, 2 : VnigCYP1063, 3 : VnigCYP119, 4 : VcCYP90B27v1. M: Normal Run 250bp-II DNA ladder / DNA marker
Fig. 6 Y33 vector linearization and colony PCR gel electrophoresis A: Y33 vector enzyme digestion electrophoresis map; B : candidate gene recombinant bacteria water PCR
Fig. 8 Fermentation products of VnigCYP063 and VcCYP90B27 in Vg13 chassis A: Retention time diagram of TIC(m/z425)of different yeast products; B: 22(R)-hydroxycholesterol standard mass spectrum; C/D: Y33-VnigCYP063 and Y33-VcCYP90B27 yeast products 22(R)-hydroxycholesterol mass spectra
Fig. 12 Determination of yeast fermentated products A: Standard curve of 22(R)-hydroxycholesterol. B: Quantitative analysis of chassisobacteria products,CHOL is cholesterol,22(R)-CHOL is 22-(R)-hydroxycholesterol. The lowercase letter indicates that the yield difference between different strains reached a significant level of(P<0.05)
| [1] | 成孟华, 饶高雄. 藜芦属植物化学成分和药理作用的研究进展[J]. 中草药, 2021, 52(18): 5758-5774. |
| Cheng MH, Rao GX. Research progress on chemical constituents and pharmacological activities of plants from Veratrum[J]. Chin Tradit Herb Drugs, 2021, 52(18): 5758-5774. | |
| [2] | Xiang LM, Wang YH, Yi XM, et al. Steroidal alkaloid glycosides and phenolics from the immature fruits of Solanum nigrum[J]. Fitoterapia, 2019, 137: 104268. |
| [3] | 李文希, 张屏, 李福全, 等. 藜芦甾体生物碱抗肿瘤活性研究进展[J]. 世界科学技术-中医药现代化, 2020, 22(1): 118-125. |
| Li WX, Zhang P, Li FQ, et al. Research progress on antitumor activity of steroidal alkaloids in genus Veratrum[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(1): 118-125. | |
| [4] | 张蒙珍, 高丽娟, 徐世芳, 等. 藜芦属植物甾体生物碱及其药理活性研究进展[J]. 中国中药杂志, 2020, 45(21): 5129-5142. |
| Zhang MZ, Gao LJ, Xu SF, et al. Advances in studies on steroidal alkaloids and their pharmacological activities in genus Veratrum[J]. China J Chin Mater Med, 2020, 45(21): 5129-5142. | |
| [5] | Giannis A, Heretsch P, Sarli V, et al. Synthesis of cyclopamine using a biomimetic and diastereoselective approach[J]. Angew Chem Int Ed Engl, 2009, 48(42): 7911-7914. |
| [6] | Wang D, Yu ZJ, Guan M, et al. Comparative transcriptome analysis of Veratrum maackii and Veratrum nigrum reveals multiple candidate genes involved in steroidal alkaloid biosynthesis[J]. Sci Rep, 2023, 13(1): 8198. |
| [7] |
Xu LP, Wang D, Chen J, et al. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production[J]. Metab Eng, 2022, 70: 115-128.
doi: 10.1016/j.ymben.2022.01.013 pmid: 35085779 |
| [8] | Lin Y, Wang YN, Zhang GH, et al. Reconstruction of engineered yeast factory for high yield production of ginsenosides Rg3 and Rd[J]. Front Microbiol, 2023, 14: 1191102. |
| [9] | Bureau JA, Oliva ME, Dong YM, et al. Engineering yeast for the production of plant terpenoids using synthetic biology approaches[J]. Nat Prod Rep, 2023, 40(12): 1822-1848. |
| [10] |
Li MK, Ma MY, Wu ZK, et al. Advances in the biosynthesis and metabolic engineering of rare ginsenosides[J]. Appl Microbiol Biotechnol, 2023, 107(11): 3391-3404.
doi: 10.1007/s00253-023-12549-6 pmid: 37126085 |
| [11] | Augustin MM, Ruzicka DR, Shukla AK, et al. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells[J]. Plant J, 2015, 82(6): 991-1003. |
| [12] | 寇呈熹. 藜芦嗪的生物合成研究[D]. 哈尔滨: 东北林业大学, 2023. |
| Kou CX. Study on biosynthesis of verazine[D]. Harbin:Northeast Forestry University, 2023. | |
| [13] |
Seki H, Tamura K, Muranaka T. P450s and UGTs: key players in the structural diversity of triterpenoid saponins[J]. Plant Cell Physiol, 2015, 56(8): 1463-1471.
doi: 10.1093/pcp/pcv062 pmid: 25951908 |
| [14] |
Sonawane PD, Pollier J, Panda S, et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism[J]. Nat Plants, 2016, 3: 16205.
doi: 10.1038/nplants.2016.205 pmid: 28005066 |
| [15] |
Yin Y, Gao L, Zhang X, et al. A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway[J]. Phytochemistry, 2018, 156: 116-123.
doi: S0031-9422(18)30587-9 pmid: 30268044 |
| [16] | Chen Z, Yu HY, Jin GT, et al. 22R-but not 22S-hydroxycholesterol is recruited for diosgenin biosynthesis[J]. The Plant Journal, 2022:109,940-951. |
| [17] | 张永辉, 刘正杰, 成钦, 等. 芦笋胆固醇C-22羟化酶基因AoCYP90B27的克隆及表达模式分析[J]. 西北农业学报, 2023, 32(8): 1205-1214. |
| Zhang YH, Liu ZJ, Cheng Q, et al. Cloning and expression pattern of cholesterol C-22 hydroxylase gene AoCYP90B27 from Asparagus officinalis[J]. Acta Agric Boreali Occidentalis Sin, 2023, 32(8): 1205-1214. | |
| [18] | Szeliga M, Ciura J, Tyrka M. Representational difference analysis of transcripts involved in jervine biosynthesis[J]. Life, 2020, 10(6): 88. |
| [19] | 郑晓红, 管童伟, 韩旭然, 等. 环巴胺类似物的合成及体外抗肿瘤细胞活性研究[J]. 天然产物研究与开发, 2015, 27(5): 890-895. |
|
Zheng XH, Guan TW, Han XR, et al. Synthesis and antitumor activity of cyclopamine analogues[J]. Nat Prod Res Dev, 2015, 27(5): 890-895.
doi: 10.16333/j.1001-6880.2015.05.027 |
|
| [20] |
Wang Y, Shi Y, Tian WS, et al. Stereoselective synthesis of(-)-verazine and congeners via a cascade ring-switching process of furostan-26-acid[J]. Org Lett, 2020, 22(7): 2761-2765.
doi: 10.1021/acs.orglett.0c00747 pmid: 32202118 |
| [21] | 温文, 薛兵, 康静静, 等. 响应面法优化毛叶藜芦环巴胺的提取工艺[J]. 食品工业科技, 2014, 35(4): 219-222. |
| Wen W, Xue B, Kang JJ, et al. Optimization of cyclopamine extraction from Veratrum grandiflorum Loes by response surface methodology[J]. Sci Technol Food Ind, 2014, 35(4): 219-222. | |
| [22] | Turner MW, Cruz R, Mattos J, et al. Cyclopamine bioactivity by extraction method from Veratrum californicum[J]. Bioorg Med Chem, 2016, 24(16): 3752-3757. |
| [23] | Turner MW, Rossi M, Campfield V, et al. Steroidal alkaloid variation in Veratrum californicum as determined by modern methods of analytical analysis[J]. Fitoterapia, 2019, 137: 104281. |
| [24] |
Parks LW, Casey WM. Physiological implications of sterol biosynthesis in yeast[J]. Annu Rev Microbiol, 1995, 49: 95-116.
pmid: 8561481 |
| [25] |
Dai ZB, Liu Y, Zhang XN, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metab Eng, 2013, 20: 146-156.
doi: 10.1016/j.ymben.2013.10.004 pmid: 24126082 |
| [26] | Xu SH, Nes WD. Biosynthesis of cholesterol in the yeast mutant erg6[J]. Biochem Biophys Res Commun, 1988, 155(1): 509-517. |
| [27] |
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds[J]. Gene, 1995, 156(1): 119-122.
doi: 10.1016/0378-1119(95)00037-7 pmid: 7737504 |
| [28] |
Zhao FL, Bai P, Liu T, et al. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2016, 113(8): 1787-1795.
doi: 10.1002/bit.25934 pmid: 26757342 |
| [29] |
Yang JZ, Liu YG, Zhong DC, et al. Combinatorial optimization and spatial remodeling of CYPs to control product profile[J]. Metab Eng, 2023, 80: 119-129.
doi: 10.1016/j.ymben.2023.09.004 pmid: 37703999 |
| [1] | QIAO Meng-xin, LI Su-zhen, CHEN Jing-tang. Functional Analysis of Ferric Reductase Gene ZmFRO2 in Maize [J]. Biotechnology Bulletin, 2020, 36(11): 9-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||