Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (3): 25-40.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0882
Previous Articles Next Articles
WANG Xian(), PENG Ya-kun, CHEN Meng, KONG Meng-juan, TAN Shu-tang()
Received:
2023-09-13
Online:
2024-03-26
Published:
2024-04-08
Contact:
TAN Shu-tang
E-mail:wangxian0417@mail.ustc.edu.cn;sttan@ustc.edu.cn
WANG Xian, PENG Ya-kun, CHEN Meng, KONG Meng-juan, TAN Shu-tang. Regulation of PIN-FORMED-mediated Polar Auxin Transport in Plant Gravitropism[J]. Biotechnology Bulletin, 2024, 40(3): 25-40.
Fig. 1 Gravity-sensing positions and related regulators in roots and shoots (A)A schematic diagram showing the stem(inflorescence)of Arabidopsis.(B)Schematic structure of the Arabidopsis inflorescent stem longitudinal region: epidermis, cortex, and endodermis.(C)A schematic diagram of the endodermal cell in Arabidopsis. Amyloplasts sediment toward the bottom of the cell according to the gravity vector. The endodermal cell is occupied by a large central vacuole.(D)Schematic structure of the Arabidopsis root cap, which is composed of four layers of columella cells (blue) and the surrounding lateral root cap cells. (E)A schematic diagram of columella cells in Arabidopsis. Nucleus is in the upper part of the cell, and the vacuole located in the center of cell. Amyloplasts sediment toward the bottom of the cell according to the gravity vector. Under vertical growth conditions, the CCL domain of LZYs interacts with the BRX domain of RLD(RCC1-like domain). (F)Root reorientation of Arabidopsis thaliana.(G)Redirected gravity stimulation activates the LZY protein phosphorylation mediated by the MKK5-MPK3 kinase module, and subsequently, phosphorylated LZYs interacting with the TOC protein prompted the transport of LZY protein from the plasma membrane to statoliths. Amyloplast sedimentation guides the LAZY proteins to distribute onto the new lower side of the plasma membrane in columella cells
Fig. 2 Post-translational modifications regulate the localization of PIN The recycling and vacuolar degradation of PIN proteins rely on clathrin-mediated endocytosis, vesicle trafficking and endomembrane fusion. Posttranslational modifications determine the subcellular localizations of PIN proteins. Protein kinases, including PID, D6PK, CAMEL, MPKs, and CRKs, directly phosphorylate PINs and determine PIN polarity or activity of transport. Protein phosphatases PP2A, PP6, and PP1 are involved in the dephosphorylation of PINs. PAX recruits BRX to regulate local PI(4,5)P2 biosynthesis, thus modulating the endocytosis of PINs. For PIN2, phosphorylated PIN2 protein recruits MAB4/MEL proteins, which further regulate PIN2 polarity through the endosomal trafficking pathway. Among these regulators, PAX and D6PK are localized to the basal side of plasma membrane
PIN蛋白相关的抑制剂 Inhibitors of PINs | 功能 Function | 参考文献 References |
---|---|---|
抑草生NPA | PIN蛋白结合抑制剂 | [ |
萘普生Naproxen | PIN蛋白结合抑制剂 | [ |
黄酮醇Flavonols | PIN蛋白结合抑制剂 | [ |
褪黑素Melatonin | 抑制PIN1, PIN3 和PIN7表达 | [ |
S-亚硝基谷胱甘肽GSNO | 抑制PIN2内吞 | [ |
ES4 Endosidin4 | ARF-GEFs抑制剂 | [ |
BFA Brefeldin A | ARF-GEFs抑制剂 | [ |
渥曼青霉素Wortmannin | 抑制蛋白靶向液泡分选和内吞 | [ |
2,3,5-三碘苯甲酸 TIBA | 抑制PIN在内膜系统的运输 | [ |
Table 1 Related inhibitors of PINs
PIN蛋白相关的抑制剂 Inhibitors of PINs | 功能 Function | 参考文献 References |
---|---|---|
抑草生NPA | PIN蛋白结合抑制剂 | [ |
萘普生Naproxen | PIN蛋白结合抑制剂 | [ |
黄酮醇Flavonols | PIN蛋白结合抑制剂 | [ |
褪黑素Melatonin | 抑制PIN1, PIN3 和PIN7表达 | [ |
S-亚硝基谷胱甘肽GSNO | 抑制PIN2内吞 | [ |
ES4 Endosidin4 | ARF-GEFs抑制剂 | [ |
BFA Brefeldin A | ARF-GEFs抑制剂 | [ |
渥曼青霉素Wortmannin | 抑制蛋白靶向液泡分选和内吞 | [ |
2,3,5-三碘苯甲酸 TIBA | 抑制PIN在内膜系统的运输 | [ |
[1] |
Morita MT, Tasaka M. Gravity sensing and signaling[J]. Curr Opin Plant Biol, 2004, 7(6): 712-718.
pmid: 15491921 |
[2] |
Sack FD. Plant gravity sensing[J]. Int Rev Cytol, 1991, 127: 193-252.
pmid: 11536485 |
[3] |
Müller A, Guan CH, Gälweiler L, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control[J]. EMBO J, 1998, 17(23): 6903-6911.
pmid: 9843496 |
[4] |
Krecek P, Skupa P, Libus J, et al. The PIN-FORMED(PIN)protein family of auxin transporters[J]. Genome Biol, 2009, 10(12): 249.
doi: 10.1186/gb-2009-10-12-249 pmid: 20053306 |
[5] |
Juniper BE, Groves S, Landau-Schachar B, et al. Root cap and the perception of gravity[J]. Nature, 1966, 209(5018): 93-94.
doi: 10.1038/209093a0 |
[6] |
Tsugeki R, Fedoroff NV. Genetic ablation of root cap cells in Arabidopsis[J]. Proc Natl Acad Sci USA, 1999, 96(22): 12941-12946.
doi: 10.1073/pnas.96.22.12941 pmid: 10536027 |
[7] |
Blancaflor EB, Fasano JM, Gilroy S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity[J]. Plant Physiol, 1998, 116(1): 213-222.
pmid: 9449842 |
[8] |
Fukaki H, Wysocka-Diller J, Kato T, et al. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana[J]. Plant J, 1998, 14(4): 425-430.
doi: 10.1046/j.1365-313x.1998.00137.x pmid: 9670559 |
[9] |
Caspar T, Pickard BG. Gravitropism in a starchless mutant of Arabidopsis[J]. Planta, 1989, 177(2): 185-197.
doi: 10.1007/BF00392807 pmid: 24212341 |
[10] |
Kiss JZ, Hertel R, Sack FD. Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana[J]. Planta, 1989, 177(2): 198-206.
doi: 10.1007/BF00392808 pmid: 24212342 |
[11] |
Vitha S, Yang M, Sack FD, et al. Gravitropism in the starch excess mutant of Arabidopsis thaliana[J]. Am J Bot, 2007, 94(4): 590-598.
doi: 10.3732/ajb.94.4.590 URL |
[12] |
Perbal G, Driss-Ecole D. Mechanotransduction in gravisensing cells[J]. Trends Plant Sci, 2003, 8(10): 498-504.
pmid: 14557047 |
[13] |
Legue V, Blancaflor E, Wymer C, et al. Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity[J]. Plant Physiol, 1997, 114(3): 789-800.
doi: 10.1104/pp.114.3.789 URL |
[14] |
Plieth C, Trewavas AJ. Reorientation of seedlings in the earth's gravitational field induces cytosolic calcium transients[J]. Plant Physiol, 2002, 129(2): 786-796.
pmid: 12068119 |
[15] |
Chauvet H, Pouliquen O, Forterre Y, et al. Inclination not force is sensed by plants during shoot gravitropism[J]. Sci Rep, 2016, 6: 35431.
doi: 10.1038/srep35431 pmid: 27739470 |
[16] |
Pouliquen O, Forterre Y, Bérut A, et al. A new scenario for gravity detection in plants: the position sensor hypothesis[J]. Phys Biol, 2017, 14(3): 035005.
doi: 10.1088/1478-3975/aa6876 URL |
[17] |
Bérut A, Chauvet H, Legué V, et al. Gravisensors in plant cells behave like an active granular liquid[J]. Proc Natl Acad Sci USA, 2018, 115(20): 5123-5128.
doi: 10.1073/pnas.1801895115 pmid: 29712863 |
[18] |
Li PJ, Wang YH, Qian Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Res, 2007, 17(5): 402-410.
doi: 10.1038/cr.2007.38 pmid: 17468779 |
[19] |
Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and-independent gravity signaling pathways[J]. Plant Cell Physiol, 2007, 48(5): 678-688.
doi: 10.1093/pcp/pcm042 pmid: 17412736 |
[20] |
Nakamura M, Nishimura T, Morita MT. Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism[J]. Curr Opin Plant Biol, 2019, 52: 54-60.
doi: S1369-5266(19)30030-5 pmid: 31446250 |
[21] |
Ge LF, Chen RJ. Negative gravitropism in plant roots[J]. Nat Plants, 2016, 2(11): 16155.
doi: 10.1038/nplants.2016.155 pmid: 27748769 |
[22] |
Taniguchi M, Furutani M, Nishimura T, et al. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots[J]. Plant Cell, 2017, 29(8): 1984-1999.
doi: 10.1105/tpc.16.00575 URL |
[23] |
Yoshihara T, Spalding EP. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture[J]. Plant Physiol, 2017, 175(2): 959-969.
doi: 10.1104/pp.17.00942 pmid: 28821594 |
[24] |
Furutani M, Hirano Y, Nishimura T, et al. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control[J]. Nat Commun, 2020, 11(1): 76.
doi: 10.1038/s41467-019-13729-7 |
[25] |
Che XM, Splitt BL, Eckholm MT, et al. BRXL4-LAZY1 interaction at the plasma membrane controls Arabidopsis branch angle and gravitropism[J]. Plant J, 2023, 113(2): 211-224.
doi: 10.1111/tpj.v113.2 URL |
[26] |
Chen JY, Yu RB, Li N, et al. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants[J]. Cell, 2023, 186(22): 4788-4802.e15.
doi: 10.1016/j.cell.2023.09.014 pmid: 37741279 |
[27] |
Nishimura T, Mori S, Shikata H, et al. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane[J]. Science, 2023, 381(6661): 1006-1010.
doi: 10.1126/science.adh9978 pmid: 37561884 |
[28] |
Sedbrook JC, Chen RJ, Masson PH. ARG1(altered response to gravity)encodes a DnaJ-like protein that potentially interacts with the cytoskeleton[J]. Proc Natl Acad Sci USA, 1999, 96(3): 1140-1145.
pmid: 9927707 |
[29] |
Boonsirichai K, Sedbrook JC, Chen RJ, et al. ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes[J]. Plant Cell, 2003, 15(11): 2612-2625.
doi: 10.1105/tpc.015560 pmid: 14507996 |
[30] |
Harrison BR, Masson PH. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes[J]. Plant J, 2008, 53(2): 380-392.
pmid: 18047472 |
[31] |
Fukaki H, Fujisawa H, Tasaka M. SGR1, SGR2, and SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana[J]. Plant Physiol, 1996, 110(3): 945-955.
pmid: 8819871 |
[32] |
Kato T, Morita MT, Fukaki H, et al. SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis[J]. Plant Cell, 2002, 14(1): 33-46.
doi: 10.1105/tpc.010215 URL |
[33] |
Silady RA, Kato T, Lukowitz W, et al. The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans[J]. Plant Physiol, 2004, 136(2): 3095-3103; discussion 3002.
doi: 10.1104/pp.104.050583 URL |
[34] |
Yano D, Sato M, Saito C, et al. A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism[J]. Proc Natl Acad Sci USA, 2003, 100(14): 8589-8594.
doi: 10.1073/pnas.1430749100 URL |
[35] |
Yamauchi Y, Fukaki H, Fujisawa H, et al. Mutations in the SGR4, SGR5 and SGR6 loci of Arabidopsis thaliana alter the shoot gravitropism[J]. Plant Cell Physiol, 1997, 38(5): 530-535.
doi: 10.1093/oxfordjournals.pcp.a029201 pmid: 9210330 |
[36] |
Niihama M, Takemoto N, Hashiguchi Y, et al. ZIP genes encode proteins involved in membrane trafficking of the TGN-PVC/vacuoles[J]. Plant Cell Physiol, 2009, 50(12): 2057-2068.
doi: 10.1093/pcp/pcp137 pmid: 19884248 |
[37] |
Hashiguchi Y, Niihama M, Takahashi T, et al. Loss-of-function mutations of retromer large subunit genes suppress the phenotype of an Arabidopsis zig mutant that lacks qb-SNARE VTI11[J]. Plant Cell, 2010, 22(1): 159-172.
doi: 10.1105/tpc.109.069294 URL |
[38] |
Kim JY, Ryu JY, Baek K, et al. High temperature attenuates the gravitropism of inflorescence stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis[J]. N Phytol, 2016, 209(1): 265-279.
doi: 10.1111/nph.2016.209.issue-1 URL |
[39] |
Nakamura M, Toyota M, Tasaka M, et al. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing[J]. Plant Cell, 2011, 23(5): 1830-1848.
doi: 10.1105/tpc.110.079442 URL |
[40] |
Luschnig C, Gaxiola RA, Grisafi P, et al. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana[J]. Genes Dev, 1998, 12(14): 2175-2187.
doi: 10.1101/gad.12.14.2175 URL |
[41] |
Baster P, Robert S, Kleine-Vehn J, et al. SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism[J]. EMBO J, 2013, 32(2): 260-274.
doi: 10.1038/emboj.2012.310 pmid: 23211744 |
[42] |
Armengot L, Marquès-Bueno MM, Jaillais Y. Regulation of polar auxin transport by protein and lipid kinases[J]. J Exp Bot, 2016, 67(14): 4015-4037.
doi: 10.1093/jxb/erw216 pmid: 27242371 |
[43] |
Abas L, Benjamins R, Malenica N, et al. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism[J]. Nat Cell Biol, 2006, 8(3): 249-256.
doi: 10.1038/ncb1369 |
[44] |
Löfke C, Zwiewka M, Heilmann I, et al. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism[J]. Proc Natl Acad Sci USA, 2013, 110(9): 3627-3632.
doi: 10.1073/pnas.1300107110 pmid: 23391733 |
[45] |
Xu K, Jourquin J, Xu XY, et al. Dynamic GOLVEN-ROOT GROWTH FACTOR 1 INSENSITIVE signaling in the root cap mediates root gravitropism[J]. Plant Physiol, 2023, 192(1): 256-273.
doi: 10.1093/plphys/kiad073 pmid: 36747317 |
[46] |
Kleine-Vehn J, Ding ZJ, Jones AR, et al. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells[J]. Proc Natl Acad Sci USA, 2010, 107(51): 22344-22349.
doi: 10.1073/pnas.1013145107 pmid: 21135243 |
[47] |
Rakusová H, Gallego-Bartolomé J, Vanstraelen M, et al. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana[J]. Plant J, 2011, 67(5): 817-826.
doi: 10.1111/tpj.2011.67.issue-5 URL |
[48] |
Friml J, Wiśniewska J, Benková E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis[J]. Nature, 2002, 415(6873): 806-809.
doi: 10.1038/415806a |
[49] |
Rakusová H, Han HB, Valošek P, et al. Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls[J]. Plant J, 2019, 98(6): 1048-1059.
doi: 10.1111/tpj.2019.98.issue-6 URL |
[50] |
Rosquete MR, von Wangenheim D, Marhavý P, et al. An auxin transport mechanism restricts positive orthogravitropism in lateral roots[J]. Curr Biol, 2013, 23(9): 817-822.
doi: 10.1016/j.cub.2013.03.064 pmid: 23583551 |
[51] |
Roychoudhry S, Sageman-Furnas K, Wolverton C, et al. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots[J]. Nat Plants, 2023, 9(9): 1500-1513.
doi: 10.1038/s41477-023-01478-x pmid: 37666965 |
[52] |
Roychoudhry S, Del Bianco M, Kieffer M, et al. Auxin controls gravitropic setpoint angle in higher plant lateral branches[J]. Curr Biol, 2013, 23(15): 1497-1504.
doi: 10.1016/j.cub.2013.06.034 pmid: 23891109 |
[53] |
Ogura T, Goeschl C, Filiault D, et al. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport[J]. Cell, 2019, 178(2): 400-412.e16.
doi: 10.1016/j.cell.2019.06.021 URL |
[54] |
Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution[J]. Plant Cell, 2015, 27(1): 20-32.
doi: 10.1105/tpc.114.134874 URL |
[55] |
Kitakura S, Vanneste S, Robert S, et al. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis[J]. Plant Cell, 2011, 23(5): 1920-1931.
doi: 10.1105/tpc.111.083030 URL |
[56] |
Dhonukshe P, Aniento F, Hwang I, et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis[J]. Curr Biol, 2007, 17(6): 520-527.
doi: 10.1016/j.cub.2007.01.052 pmid: 17306539 |
[57] |
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, recycle, degrade: regulating plasma membrane protein accumulation[J]. Plant Cell, 2019, 31(12): 2833-2854.
doi: 10.1105/tpc.19.00433 |
[58] |
Fotin A, Cheng YF, Sliz P, et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy[J]. Nature, 2004, 432(7017): 573-579.
doi: 10.1038/nature03079 |
[59] |
Zhang Y, Yu QQ, Jiang N, et al. Clathrin regulates blue light-triggered lateral auxin distribution and hypocotyl phototropism in Arabidopsis[J]. Plant Cell Environ, 2017, 40(1): 165-176.
doi: 10.1111/pce.v40.1 URL |
[60] |
Wang C, Yan X, Chen Q, et al. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis[J]. Plant Cell, 2013, 25(2): 499-516.
doi: 10.1105/tpc.112.108373 URL |
[61] |
Ischebeck T, Werner S, Krishnamoorthy P, et al. Phosphatidylinositol 4, 5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis[J]. Plant Cell, 2013, 25(12): 4894-4911.
doi: 10.1105/tpc.113.116582 URL |
[62] |
Marquès-Bueno MM, Armengot L, Noack LC, et al. Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism[J]. Curr Biol, 2021, 31(1): 228-237.e10.
doi: 10.1016/j.cub.2020.10.011 URL |
[63] | Lesia R., Lukas F, Minxia Z, et al. Cell surface auxin signalling directly targets PIN-mediated auxin fluxes for adaptive plant development[J]. bioRxiv, 2022. DOI: 10.1101/2022.11.30.518503 |
[64] |
Li LX, Verstraeten I, Roosjen M, et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth[J]. Nature, 2021, 599(7884): 273-277.
doi: 10.1038/s41586-021-04037-6 |
[65] |
Lin WW, Zhou X, Tang WX, et al. TMK-based cell-surface auxin signalling activates cell-wall acidification[J]. Nature, 2021, 599(7884): 278-282.
doi: 10.1038/s41586-021-03976-4 |
[66] |
Kjos I, Vestre K, Guadagno NA, et al. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(10): 1397-1409.
doi: 10.1016/j.bbamcr.2018.07.009 URL |
[67] |
Geldner N, Friml J, Stierhof YD, et al. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking[J]. Nature, 2001, 413(6854): 425-428.
doi: 10.1038/35096571 |
[68] |
Peyroche A, Antonny B, Robineau S, et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain[J]. Mol Cell, 1999, 3(3): 275-285.
doi: 10.1016/s1097-2765(00)80455-4 pmid: 10198630 |
[69] |
Geldner N, Anders N, Wolters H, et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth[J]. Cell, 2003, 112(2): 219-230.
pmid: 12553910 |
[70] |
Kleine-Vehn J, Dhonukshe P, Sauer M, et al. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis[J]. Curr Biol, 2008, 18(7): 526-531.
doi: 10.1016/j.cub.2008.03.021 pmid: 18394892 |
[71] |
Zhang XX, Adamowski M, Marhava P, et al. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters[J]. Plant Cell, 2020, 32(5): 1644-1664.
doi: 10.1105/tpc.19.00869 URL |
[72] |
Kleine-Vehn J, Leitner J, Zwiewka M, et al. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting[J]. Proc Natl Acad Sci USA, 2008, 105(46): 17812-17817.
doi: 10.1073/pnas.0808073105 pmid: 19004783 |
[73] |
Jaillais Y, Fobis-Loisy I, Miège C, et al. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis[J]. Nature, 2006, 443(7107): 106-109.
doi: 10.1038/nature05046 |
[74] |
Zwiewka M, Feraru E, Möller B, et al. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis[J]. Cell Res, 2011, 21(12): 1711-1722.
doi: 10.1038/cr.2011.99 pmid: 21670741 |
[75] |
Gao CJ, Luo M, Zhao Q, et al. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth[J]. Curr Biol, 2014, 24(21): 2556-2563.
doi: 10.1016/j.cub.2014.09.014 pmid: 25438943 |
[76] |
Galván-Ampudia CS, Offringa R. Plant evolution: AGC kinases tell the auxin tale[J]. Trends Plant Sci, 2007, 12(12): 541-547.
pmid: 18024140 |
[77] |
Christensen SK, Dagenais N, Chory J, et al. Regulation of auxin response by the protein kinase PINOID[J]. Cell, 2000, 100(4): 469-478.
doi: 10.1016/s0092-8674(00)80682-0 pmid: 10693763 |
[78] |
Benjamins R, Quint A, Weijers D, et al. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport[J]. Development, 2001, 128(20): 4057-4067.
doi: 10.1242/dev.128.20.4057 pmid: 11641228 |
[79] |
Friml J, Yang X, Michniewicz M, et al. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux[J]. Science, 2004, 306(5697): 862-865.
doi: 10.1126/science.1100618 pmid: 15514156 |
[80] |
Dhonukshe P, Huang F, Galvan-Ampudia CS, et al. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S)motifs to direct apical PIN recycling[J]. Development, 2010, 137(19): 3245-3255.
doi: 10.1242/dev.052456 pmid: 20823065 |
[81] |
Huang F, Kemel Zago M, Abas L, et al. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport[J]. Plant Cell, 2010, 22(4): 1129-1142.
doi: 10.1105/tpc.109.072678 URL |
[82] |
Zourelidou M, Absmanner B, Weller B, et al. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID[J]. eLife, 2014, 3: e02860.
doi: 10.7554/eLife.02860 URL |
[83] |
Glanc M, Van Gelderen K, Hoermayer L, et al. AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells[J]. Curr Biol, 2021, 31(9): 1918-1930.e5.
doi: 10.1016/j.cub.2021.02.028 URL |
[84] |
Furutani M, Sakamoto N, Yoshida S, et al. Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers[J]. Development, 2011, 138(10): 2069-2078.
doi: 10.1242/dev.057745 pmid: 21490067 |
[85] |
Konstantinova N, Hoermayer L, Glanc M, et al. WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions[J]. Nat Commun, 2022, 13(1): 5147.
doi: 10.1038/s41467-022-32888-8 pmid: 36050482 |
[86] |
Ding ZJ, Galván-Ampudia CS, Demarsy E, et al. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis[J]. Nat Cell Biol, 2011, 13(4): 447-452.
doi: 10.1038/ncb2208 |
[87] |
Grones P, Abas M, Hajný J, et al. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism[J]. Sci Rep, 2018, 8(1): 10279.
doi: 10.1038/s41598-018-28188-1 pmid: 29980705 |
[88] |
Barbosa ICR, Hammes UZ, Schwechheimer C. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation[J]. Trends Plant Sci, 2018, 23(6): 523-538.
doi: S1360-1385(18)30051-7 pmid: 29678589 |
[89] |
Tan ST, Luschnig C, Friml J. Pho-view of auxin: reversible protein phosphorylation in auxin biosynthesis, transport and signaling[J]. Mol Plant, 2021, 14(1): 151-165.
doi: 10.1016/j.molp.2020.11.004 pmid: 33186755 |
[90] |
Zourelidou M, Müller I, Willige BC, et al. The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana[J]. Development, 2009, 136(4): 627-636.
doi: 10.1242/dev.028365 pmid: 19168677 |
[91] |
Barbosa IR, Zourelidou M, Willige B, et al. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane[J]. Dev Cell, 2014, 29(6): 674-685.
doi: 10.1016/j.devcel.2014.05.006 pmid: 24930721 |
[92] |
Willige BC, Ahlers S, Zourelidou M, et al. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis[J]. Plant Cell, 2013, 25(5): 1674-1688.
doi: 10.1105/tpc.113.111484 URL |
[93] | Weller B, Zourelidou M, Frank L, et al. Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth[J]. Proc Natl Acad Sci USA, 2017, 114(5): E887-e896. |
[94] |
Koh SWH, Marhava P, Rana S, et al. Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins[J]. Plant Cell, 2021, 33(6): 1945-1960.
doi: 10.1093/plcell/koab076 URL |
[95] |
Marhava P, Bassukas AEL, Zourelidou M, et al. A molecular rheostat adjusts auxin flux to promote root protophloem differentiation[J]. Nature, 2018, 558(7709): 297-300.
doi: 10.1038/s41586-018-0186-z |
[96] |
Marhava P, Aliaga Fandino AC, Koh SWH, et al. Plasma membrane domain patterning and self-reinforcing polarity in Arabidopsis[J]. Dev Cell, 2020, 52(2): 223-235.e5.
doi: S1534-5807(19)30984-0 pmid: 31866202 |
[97] |
Xiao Y, Offringa R. PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX[J]. Nat Plants, 2020, 6(5): 544-555.
doi: 10.1038/s41477-020-0650-2 pmid: 32393878 |
[98] |
Tan ST, Zhang XX, Kong W, et al. The lipid code-dependent phosphoswitch PDK1-D6PK activates PIN-mediated auxin efflux in Arabidopsis[J]. Nat Plants, 2020, 6(5): 556-569.
doi: 10.1038/s41477-020-0648-9 |
[99] |
Zegzouti H, Anthony RG, Jahchan N, et al. Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1(PDK1)in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(16): 6404-6409.
doi: 10.1073/pnas.0510283103 pmid: 16601102 |
[100] |
Jia WY, Li BH, Li SJ, et al. Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis[J]. PLoS Biol, 2016, 14(9): e1002550.
doi: 10.1371/journal.pbio.1002550 URL |
[101] |
Dory M, Hatzimasoura E, Kállai BM, et al. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants[J]. FEBS Lett, 2018, 592(1): 89-102.
doi: 10.1002/1873-3468.12929 pmid: 29197077 |
[102] |
Rigó G, Ayaydin F, Tietz O, et al. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis[J]. Plant Cell, 2013, 25(5): 1592-1608.
doi: 10.1105/tpc.113.110452 URL |
[103] |
Baba AB, Rigó G, Ayaydin F, et al. Functional analysis of the Arabidopsis thaliana CDPK-related kinase family: AtCRK1 regulates responses to continuous light[J]. Int J Mol Sci, 2018, 19(5): 1282.
doi: 10.3390/ijms19051282 URL |
[104] |
Baba AI, Andrási N, Valkai I, et al. AtCRK5 protein kinase exhibits a regulatory role in hypocotyl hook development during skotomorphogenesis[J]. Int J Mol Sci, 2019, 20(14): 3432.
doi: 10.3390/ijms20143432 URL |
[105] |
Baba, Valkai, Labhane, et al. CRK5 protein kinase contributes to the progression of embryogenesis of Arabidopsis thaliana[J]. Int J Mol Sci, 2019, 20(24): 6120.
doi: 10.3390/ijms20246120 URL |
[106] |
Hajný J, Prát T, Rydza N, et al. Receptor kinase module targets PIN-dependent auxin transport during canalization[J]. Science, 2020, 370(6516): 550-557.
doi: 10.1126/science.aba3178 pmid: 33122378 |
[107] |
Michniewicz M, Zago MK, Abas L, et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux[J]. Cell, 2007, 130(6): 1044-1056.
doi: 10.1016/j.cell.2007.07.033 pmid: 17889649 |
[108] |
Li Y, Wang YP, Tan ST, et al. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex[J]. Adv Sci, 2020, 7(3): 1901455.
doi: 10.1002/advs.v7.3 URL |
[109] |
Tan ST, Abas M, Verstraeten I, et al. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants[J]. Curr Biol, 2020, 30(3): 381-395.e8.
doi: S0960-9822(19)31528-3 pmid: 31956021 |
[110] |
Dai MQ, Zhang C, Kania U, et al. A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis[J]. Plant Cell, 2012, 24(6): 2497-2514.
doi: 10.1105/tpc.112.098905 URL |
[111] |
Guo XL, Qin QQ, Yan J, et al. Type-one protein phosphatase4 regulates pavement cell interdigitation by modulating pin-formed1 polarity and trafficking in Arabidopsis[J]. Plant Physiol, 2015, 167(3): 1058-1075.
doi: 10.1104/pp.114.249904 URL |
[112] |
Sengupta R, Holmgren A. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation[J]. Antioxid Redox Signal, 2013, 18(3): 259-269.
doi: 10.1089/ars.2012.4716 URL |
[113] |
Feechan A, Kwon E, Yun BW, et al. A central role for S-nitrosothiols in plant disease resistance[J]. Proc Natl Acad Sci USA, 2005, 102(22): 8054-8059.
doi: 10.1073/pnas.0501456102 pmid: 15911759 |
[114] |
Sánchez-Vicente I, Lechón T, Fernández-Marcos M, et al. Nitric oxide alters the pattern of auxin maxima and PIN-FORMED1 during shoot development[J]. Front Plant Sci, 2021, 12: 630792.
doi: 10.3389/fpls.2021.630792 URL |
[115] |
Ni M, Zhang L, Shi YF, et al. Excessive cellular S-nitrosothiol impairs endocytosis of auxin efflux transporter PIN2[J]. Front Plant Sci, 2017, 8: 1988.
doi: 10.3389/fpls.2017.01988 URL |
[116] |
Teale WD, Pasternak T, Dal Bosco C, et al. Flavonol-mediated stabilization of PIN efflux complexes regulates polar auxin transport[J]. EMBO J, 2021, 40(1): e104416.
doi: 10.15252/embj.2020104416 URL |
[117] |
Tan ST. Action mode of NPA: direct inhibition on PIN auxin transporters[J]. Mol Plant, 2021, 14(2): 199.
doi: 10.1016/j.molp.2021.01.010 URL |
[118] |
Ung KL, Winkler M, Schulz L, et al. Structures and mechanism of the plant PIN-FORMED auxin transporter[J]. Nature, 2022, 609(7927): 605-610.
doi: 10.1038/s41586-022-04883-y |
[119] |
Yang ZS, Xia J, Hong JJ, et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1[J]. Nature, 2022, 609(7927): 611-615.
doi: 10.1038/s41586-022-05143-9 |
[120] |
Su NN, Zhu AQ, Tao X, et al. Structures and mechanisms of the Arabidopsis auxin transporter PIN3[J]. Nature, 2022, 609(7927): 616-621.
doi: 10.1038/s41586-022-05142-w |
[121] | Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease[J]. Nat Rev Mol Cell Biol, 2007, 8(11): 904-916. |
[122] |
Xi WY, Gong XM, Yang QY, et al. Pin1At regulates PIN1 polar localization and root gravitropism[J]. Nat Commun, 2016, 7: 10430.
doi: 10.1038/ncomms10430 pmid: 26791759 |
[123] | Okada K, Ueda J, Komaki MK, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. Plant Cell, 1991: 677-684. |
[124] |
Gälweiler L, Guan C, Müller A, et al. Regulation of polar auxin transport by PIN1 in Arabidopsis vascular tissue[J]. Science, 1998, 282(5397): 2226-2230.
doi: 10.1126/science.282.5397.2226 pmid: 9856939 |
[125] |
Abas L, Kolb M, Stadlmann J, et al. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters[J]. Proc Natl Acad Sci USA, 2021, 118(1): e2020857118.
doi: 10.1073/pnas.2020857118 URL |
[126] |
Kong MJ, Liu X, Sun LF, et al. Molecular mechanisms of N-1-naphthylphthalamic acid, a chemical tool in plant biology and agriculture[J]. Mol Hortic, 2022, 2(1): 22.
doi: 10.1186/s43897-022-00043-y pmid: 37789470 |
[127] |
Xia J, Kong MJ, Yang ZS, et al. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen[J]. Plant Commun, 2023, 4(6): 100632.
doi: 10.1016/j.xplc.2023.100632 URL |
[128] | Wang QN, An B, Wei YX, et al. Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis[J]. Front Plant Sci, 2016, 7: 1882. |
[129] |
Kania U, Nodzyński T, Lu Q, et al. The inhibitor endosidin 4 targets SEC7 domain-type ARF GTPase exchange factors and interferes with subcellular trafficking in eukaryotes[J]. Plant Cell, 2018, 30(10): 2553-2572.
doi: 10.1105/tpc.18.00127 URL |
[130] |
Takáč T, Pechan T, Šamajová O, et al. Wortmannin treatment induces changes in Arabidopsis root proteome and post-golgi compartments[J]. J Proteome Res, 2012, 11(6): 3127-3142.
doi: 10.1021/pr201111n URL |
[131] |
Junpei T, Tomohiro U. Use of brefeldin A and wortmannin to dissect post-golgi organelles related to vacuolar transport in Arabidopsis thaliana[J]. J Exp Bot, 2018, 69: 2869-2881.
doi: 10.1093/jxb/ery112 URL |
[132] |
Abu-Abied M, Belausov E, Hagay S, et al. Myosin XI-K is involved in root organogenesis, polar auxin transport, and cell division[J]. J Exp Bot, 2018, 69: 2869-2881.
doi: 10.1093/jxb/ery112 pmid: 29579267 |
[133] |
Mudgett M, Shen ZX, Dai XH, et al. Suppression of pinoid mutant phenotypes by mutations in PIN-FORMED 1 and PIN1-GFP fusion[J]. Proc Natl Acad Sci USA, 2023, 120(48): e2312918120.
doi: 10.1073/pnas.2312918120 URL |
[134] |
Leitner J, Petrášek J, Tomanov K, et al. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth[J]. Proc Natl Acad Sci USA, 2012, 109(21): 8322-8327.
doi: 10.1073/pnas.1200824109 URL |
[135] |
Tejos R, Sauer M, Vanneste S, et al. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis[J]. Plant Cell, 2014, 26(5): 2114-2128.
doi: 10.1105/tpc.114.126185 URL |
[136] |
Stanislas T, Hüser A, Barbosa ICR, et al. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity[J]. Nat Plants, 2015, 1: 15162.
doi: 10.1038/nplants.2015.162 pmid: 27251533 |
[137] |
Mellor NL, Voβ U, Janes G, et al. Auxin fluxes through plasmodesmata modify root-tip auxin distribution[J]. Development, 2020, 147(6): dev181669.
doi: 10.1242/dev.181669 URL |
[1] | FU Wei, WEI Su-yun, CHEN Ying-nan. Research Progress in the Dynamic QTL Analysis of Plant Growth and Development [J]. Biotechnology Bulletin, 2024, 40(2): 9-19. |
[2] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[5] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[6] | DU Dong-dong, QIAN Jing, LI Si-qi, LIU Wen-fei, WEI Xiang-li, LIU Chang-yong, LUO Rui-feng, KANG Li-chao. Whole Genome Sequencing and Analysis of Listeria monocytogenes Strain LMXJ15 [J]. Biotechnology Bulletin, 2023, 39(7): 298-306. |
[7] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[8] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[9] | MU De-tian, WAN Ling-yun, ZHANG Yao, WEI Shu-gen, LU Ying, FU Jin-e, TIAN Yi, PAN Li-mei, TANG Qi. House-keeping Genes Screening and Expression Patterns Analysis of Genes Involved in Alkaloid Biosynthesis in Uncaria rhynchophylla [J]. Biotechnology Bulletin, 2023, 39(2): 126-138. |
[10] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[11] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[12] | REN Li, QIAO Shu-ting, GE Chen-hui, WEI Zi-tong, XU Chen-xi. Identification and Expression Analysis of Spinach PSY Gene Family [J]. Biotechnology Bulletin, 2023, 39(12): 169-178. |
[13] | WU Li-dan, RAN Xue-qin, NIU Xi, HUANG Shi-hui, LI Sheng, WANG Jia-fu. Genome Comparison and Virulence Factor Analysis of Pathogenic Escherichia coli from Porcine [J]. Biotechnology Bulletin, 2023, 39(12): 287-299. |
[14] | LIU Chuan-he, HE Han, HE Xiu-gu, CHEN Xin, LIU Kai, SHAO Xue-hua, LAI Duo, QIN Jian, ZHUANG Qing-li, KUANG Shi-zi, XIAO Wei-qiang. Physiological and Metabolitic Mechanisms of Different Pineapple Cultivars Responding to Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(10): 219-230. |
[15] | WANG Xiang-kun, SONG Xue-hong, LIU Jin-long, GUO Pei-hong, ZHUANG Xiao-feng, WEI Liang-meng, ZHOU Fan, ZHANG Shu-yu, GAO Pan-pan, WEI Kai. Novel Coronavirus Subunit Vaccine and Screening of Its Efficient Immune Enhancer [J]. Biotechnology Bulletin, 2023, 39(1): 305-314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||