Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (10): 129-142.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0321
Previous Articles Next Articles
ZHANG Yu-shan1(
), ZHANG Wen-wen1, LIU Yan1, SHEN Yu-pu1, SUN Lu2, HUANG Wei-hong2, LI Zhong-yuan1(
)
Received:2025-03-27
Online:2025-10-26
Published:2025-10-28
Contact:
LI Zhong-yuan
E-mail:17772618639@163.com;lizhongyuan@tust.edu.cn
ZHANG Yu-shan, ZHANG Wen-wen, LIU Yan, SHEN Yu-pu, SUN Lu, HUANG Wei-hong, LI Zhong-yuan. Advances in Fumonisins Contamination: Current Status, Toxicological Mechanisms, and Mitigation Strategies[J]. Biotechnology Bulletin, 2025, 41(10): 129-142.
Fig. 3 Toxicological mechanism and hazards of fumonisinsT arrow indicates an inhibitory effect. Red arrow indicates content increase.;Blue arrow indicates content decreases
国家/组织 Country/Ognization | 产品 Production | imiting amount (μg/kg) 限量 L | 伏马毒素类型 Fumonisins type |
|---|---|---|---|
中国[ China | 玉米及其加工产品、玉米酒糟类产品、玉米青贮饲料和玉米秸秆 | 60 000 | FB1+FB2 |
| 犊牛、羔羊精料补充料 | 20 000 | ||
| 马、兔精料补充料 | 5 000 | ||
| 其他反刍动物精料补充料 | 50 000 | ||
| 猪浓缩饲料 | 5 000 | ||
| 家禽浓缩饲料 | 20 000 | ||
| 猪、兔、马配合饲料 | 5 000 | ||
| 家禽配合饲料 | 20 000 | ||
| 鱼配合饲料 | 10 000 | ||
美国[ America | 马和兔 | 1 000 | FB1+FB2+FB3 |
| 猪和鲶鱼 | 10 000 | ||
| 种用反刍动物,种禽,种用水貂,奶牛和蛋鸡 | 15 000 | ||
| 食用反刍动物(≥3月龄)和毛皮用水貂 | 30 000 | ||
| 食用家禽 | 50 000 | ||
| 其他种类动物和宠物 | 5 000 | ||
欧盟[ European union | 饲料原料:玉米及其产品 | 60 000 | FB1+FB2 |
| 补充饲料和配合饲料 | 5 000 | ||
| 猪马、兔和宠物 | 5 000 | ||
| 鱼 | 10 000 | ||
| 禽、小牛(<4月龄)、小羊 | 20 000 | ||
| 成年反刍动物(>4月龄)、水貂 | 50 000 |
Table 1 International limiting amount standards of fumonisins in animal feed
国家/组织 Country/Ognization | 产品 Production | imiting amount (μg/kg) 限量 L | 伏马毒素类型 Fumonisins type |
|---|---|---|---|
中国[ China | 玉米及其加工产品、玉米酒糟类产品、玉米青贮饲料和玉米秸秆 | 60 000 | FB1+FB2 |
| 犊牛、羔羊精料补充料 | 20 000 | ||
| 马、兔精料补充料 | 5 000 | ||
| 其他反刍动物精料补充料 | 50 000 | ||
| 猪浓缩饲料 | 5 000 | ||
| 家禽浓缩饲料 | 20 000 | ||
| 猪、兔、马配合饲料 | 5 000 | ||
| 家禽配合饲料 | 20 000 | ||
| 鱼配合饲料 | 10 000 | ||
美国[ America | 马和兔 | 1 000 | FB1+FB2+FB3 |
| 猪和鲶鱼 | 10 000 | ||
| 种用反刍动物,种禽,种用水貂,奶牛和蛋鸡 | 15 000 | ||
| 食用反刍动物(≥3月龄)和毛皮用水貂 | 30 000 | ||
| 食用家禽 | 50 000 | ||
| 其他种类动物和宠物 | 5 000 | ||
欧盟[ European union | 饲料原料:玉米及其产品 | 60 000 | FB1+FB2 |
| 补充饲料和配合饲料 | 5 000 | ||
| 猪马、兔和宠物 | 5 000 | ||
| 鱼 | 10 000 | ||
| 禽、小牛(<4月龄)、小羊 | 20 000 | ||
| 成年反刍动物(>4月龄)、水貂 | 50 000 |
| [34] | Ministry of Agriculture and Rural Affairs. Hygienic Standards for Feeds [S]. 2017-10-14, 2018-05-01. |
| [35] | Center for Veterinary Medicine Human Foods. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds [S]. 2001-11. |
| [36] | The European Commission. ( EC) No 1881/2006 Setting maximum levels for certain contaminants in foodstuffs [S]. 2006-12-19, 2017-03-01. |
| [37] | Aboul-Nasr MB, Obied-Allah MA. Biological and chemical detection of fumonisins produced on agar medium by Fusarium verticillioides isolates collected from corn in Sohag, Egypt [J]. Microbiology, 2013, 159(Pt 8): 1720-1724. |
| [38] | 国家卫生健康委员会. 食品安全国家标准 食品中伏马毒素的测定 [S]. 2016-08-31, 2018-05-01. |
| National Health Commission. National Food Safety Standard Determination of Fumonisins in Foods [S]. 2016-08-31, 2018-05-01. | |
| [39] | Li N, Liu HD, Hu XY, et al. Simultaneous determination of fumonisin B1 and B2 in maize using a facile online pre-column derivatization HPLC method [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2025, 42(4): 517-525. |
| [40] | Nji QN, Mwanza M. Three-year multi-mycotoxin analysis of South African commercial maize from three provinces [J]. Front Fungal Biol, 2024, 5: 1426782. |
| [41] | Gaspardo B, Del Zotto S, Torelli E, et al. A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere [J]. Food Chem, 2012, 135(3): 1608-1612. |
| [42] | Chavez RA, Cheng XB, Stasiewicz MJ. A review of the methodology of analyzing aflatoxin and fumonisin in single corn kernels and the potential impacts of these methods on food security [J]. Foods, 2020, 9(3): 297. |
| [43] | Omori AM, Ono EYS, Bordini JG, et al. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene [J]. Food Microbiol, 2018, 73: 160-167. |
| [44] | 邢常瑞, 郑欣, 董雪, 等. 免疫快速同步检测玉米中5种真菌毒素胶体金试纸条的构建和应用 [J]. 中国粮油学报, 2023, 38(11): 205-210. |
| Xing CR, Zheng X, Dong X, et al. Development and application of colloidal gold test strip for simultaneously and fast detection of five mycotoxins in maize [J]. J Chin Cereals Oils Assoc, 2023, 38(11): 205-210. | |
| [45] | ASLPB Gomes, Weber SH, Luciano FB. Resistance of transgenic maize cultivars to mycotoxin production-systematic review and meta-analysis [J]. Toxins, 2024, 16(8): 373. |
| [46] | Barroso VM, Rocha LO, Reis TA, et al. Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil [J]. Mycotoxin Res, 2017, 33(2): 121-127. |
| [47] | Blacutt AA, Mitchell TR, Bacon CW, et al. Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticilliodes [J]. Mol Plant Microbe Interact, 2016, 29(9): 713-723. |
| [48] | Guo ZQ, Zhang X, Wu JX, et al. In vitro inhibitory effect of the bacterium Serratia marcescens on Fusarium proliferatum growth and fumonisins production [J]. Biol Control, 2020, 143: 104188. |
| [49] | Miljaković D, Marinković J, Tamindžić G, et al. Bio-priming with Bacillus isolates suppresses seed infection and improves the germination of garden peas in the presence of Fusarium strains [J]. J Fungi, 2024, 10(5): 358. |
| [50] | 坚乃丹, 常晓娇, 孙晶, 等. 伏马毒素的危害及防控技术研究进展 [J]. 食品工业科技, 2018, 39(7): 335-339, 347. |
| Jian ND, Chang XJ, Sun J, et al. Research advances on the hazards and control of fumonisins [J]. Sci Technol Food Ind, 2018, 39(7): 335-339, 347. | |
| [51] | Vila-Donat P, Marín S, Sanchis V, et al. Tri-octahedral bentonites as potential technological feed additive for Fusarium mycotoxin reduction [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2020, 37(8): 1374-1387. |
| [52] | Becker-Algeri TA, Heidtmann-Bemvenuti R, dos Santos Hackbart HC, et al. Thermal treatments and their effects on the fumonisin B1 level in rice [J]. Food Control, 2013, 34(2): 488-493. |
| [53] | Wielogorska E, Ahmed Y, Meneely J, et al. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment [J]. Food Chem, 2019, 301: 125281. |
| [54] | Ribeiro DF, Faroni LRDA, Pimentel MAG, et al. Ozone as a fungicidal and detoxifying agent to maize contaminated with fumonisins [J]. Ozone Sci Eng, 2022, 44(1): 38-49. |
| [1] | Gelderblom WC, Jaskiewicz K, Marasas WF, et al. Fumonisins—novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme [J]. Appl Environ Microbiol, 1988, 54(7): 1806-1811. |
| [2] | ApSimon JW. Structure, synthesis, and biosynthesis of fumonisin B1 and related compounds [J]. Environ Health Perspect, 2001, 109(): 245-249. |
| [3] | Bryła M, Roszko M, Szymczyk K, et al. Fumonisins in plant-origin food and fodder—a review [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2013, 30(9): 1626-1640. |
| [4] | Chen J, Li ZM, Cheng Y, et al. Sphinganine-analog mycotoxins (SAMs): chemical structures, bioactivities, and genetic controls [J]. J Fungi, 2020, 6(4): 312. |
| [5] | 刘晓萌, 王寿南, 姜德铭, 等. 伏马毒素的污染现状及其生物脱毒研究进展 [J]. 中国畜牧杂志, 2024, 60(2): 143-149. |
| Liu XM, Wang SN, Jiang DM, et al. Current status of contamination and advances in bio-degradation of fumonisins [J]. Chin J Anim Sci, 2024, 60(2): 143-149. | |
| [6] | Qu Z, Ren XF, Du ZL, et al. Fusarium mycotoxins: The major food contaminants [J]. mLife, 2024, 3(2): 176-206. |
| [7] | Janevska S, Ferling I, Jojić K, et al. Self-protection against the sphingolipid biosynthesis inhibitor fumonisin B1 is conferred by a FUM cluster-encoded ceramide synthase [J]. mBio, 2020, 11(3): e00455-20. |
| [8] | Alexander NJ, Proctor RH, McCormick SP. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium [J]. Toxin Rev, 2009, 28(2/3): 198-215. |
| [9] | Slotte JP. Biological functions of sphingomyelins [J]. Prog Lipid Res, 2013, 52(4): 424-437. |
| [10] | Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease [J]. Nat Rev Mol Cell Biol, 2017, 19(3): 175-191. |
| [11] | Cabello-Verrugio C, Ruiz-Ortega M, Mosqueira M, et al. Oxidative stress in disease and aging: mechanisms and therapies [J]. Oxid Med Cell Longev, 2016, 2016: 8786564. |
| [55] | 高玲玲. 伏马菌素的毒性及去除方法分析 [J]. 化工管理, 2019(29): 175-176. |
| Gao LL. Analysis of toxicity and removal methods of fumonisin [J]. Chem Enterp Manag, 2019(29): 175-176. | |
| [56] | Krishnan SV, Nampoothiri KM, Suresh A, et al. Fusarium biocontrol: antagonism and mycotoxin elimination by lactic acid bacteria [J]. Front Microbiol, 2024, 14: 1260166. |
| [57] | 王晓, 郑钧予, 彭晓龙, 等. 乳杆菌脱除伏马毒素的研究 [J]. 食品工业科技, 2015, 36(9): 162-165, 170. |
| Wang X, Zheng JY, Peng XL, et al. Study on the removal of fumonisins by Lactobacillus strains [J]. Sci Technol Food Ind, 2015, 36(9): 162-165, 170. | |
| [58] | Niderkorn V, Boudra H, Morgavi DP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro [J]. J Appl Microbiol, 2006, 101(4): 849-856. |
| [59] | Styriak I, Conková E, Kmec V, et al. The use of yeast for microbial degradation of some selected mycotoxins [J]. Mycotoxin Res, 2001, 17(): 24-27. |
| [60] | Adebo OA, Kayitesi E, Njobeh PB. Reduction of mycotoxins during fermentation of whole grain sorghum to whole grain Ting (a southern African food) [J]. Toxins, 2019, 11(3): 180. |
| [61] | Zhao ZY, Zhang YM, Gong AD, et al. Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79 [J]. Appl Microbiol Biotechnol, 2019, 103(17): 7129-7140. |
| [62] | Benedetti R, Nazzi F, Locci R, et al. Degradation of fumonisin B1 by a bacterial strain isolated from soil [J]. Biodegradation, 2006, 17(1): 31-38. |
| [63] | Heinl S, Hartinger D, Thamhesl M, et al. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes [J]. J Biotechnol, 2010, 145(2): 120-129. |
| [64] | Alberts J, Schatzmayr G, Moll WD, et al. Detoxification of the fumonisin mycotoxins in maize: an enzymatic approach [J]. Toxins, 2019, 11(9): 523. |
| [12] | Chen J, Wen J, Tang YT, et al. Research progress on fumonisin B1 contamination and toxicity: a review [J]. Molecules, 2021, 26(17): 5238. |
| [13] | Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology [J]. Annu Rev Pathol, 2015, 10: 173-194. |
| [14] | Li MC, Liu SH, Tan L, et al. Fumonisin B1 induced intestinal epithelial barrier damage through endoplasmic reticulum stress triggered by the ceramide synthase 2 depletion [J]. Food Chem Toxicol, 2022, 166: 113263. |
| [15] | Kim SH, Singh MP, Sharma C, et al. Fumonisin B1 actuates oxidative stress-associated colonic damage via apoptosis and autophagy activation in murine model [J]. J Biochem Mol Toxicol, 2018: e22161. |
| [16] | Qu LK, Wang L, Ji H, et al. Toxic mechanism and biological detoxification of fumonisins [J]. Toxins, 2022, 14(3): 182. |
| [17] | Gopee NV, He QR, Sharma RP. Fumonisin B1-induced apoptosis is associated with delayed inhibition of protein kinase C, nuclear factor-κB and tumor necrosis factor α in LLC-PK1 cells [J]. Chem Biol Interact, 2003, 146(2): 131-145. |
| [18] | Chen J, Yang SH, Huang S, et al. Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway [J]. Food Chem Toxicol, 2020, 139: 111274. |
| [19] | Echenique JVZ, Estima-Silva P, Pereira DB, et al. Leukoencephalomalacia in horses associated with immature corn consumption [J]. Cienc Rural, 2019, 49(3): e20180925. |
| [20] | Javed T, Bunte RM, Dombrink-Kurtzman MA, et al. Comparative pathologic changes in broiler chicks on feed amended with Fusarium proliferatum culture material or purified fumonisin B1 and moniliformin [J]. Mycopathologia, 2005, 159(4): 553-564. |
| [21] | Ali O, Szabó-Fodor J, Fébel H, et al. Porcine hepatic response to fumonisin B1 in a short exposure period: fatty acid profile and clinical investigations [J]. Toxins, 2019, 11(11): 655. |
| [22] | Li JH, Zhu MZ, Xian RX, et al. A preliminary study on the pathology and molecular mechanism of fumonisin B1 nephrotoxicity in young quails [J]. Environ Sci Pollut Res Int, 2023, 30(53): 114438-114451. |
| [23] | Yu S, Jia BX, Liu N, et al. Fumonisin B1 triggers carcinogenesis via the HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells [J]. Sci Total Environ, 2021, 787: 147405. |
| [65] | Garnham CP, Butler SG, Telmer PG, et al. Identification and characterization of an Aspergillus niger amine oxidase that detoxifies intact fumonisins [J]. J Agric Food Chem, 2020, 68(47): 13779-13790. |
| [66] | Wang XL, Qin X, Hao ZZ, et al. Degradation of four major mycotoxins by eight manganese peroxidases in presence of a dicarboxylic acid [J]. Toxins, 2019, 11(10): 566. |
| [24] | Yu S, Jia BX, Liu N, et al. Evaluation of the individual and combined toxicity of fumonisin mycotoxins in human gastric epithelial cells [J]. Int J Mol Sci, 2020, 21(16): 5917. |
| [25] | Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B1-induced toxicity in human kidney cells [J]. Mycotoxin Res, 2023, 39(3): 271-283. |
| [26] | Penagos-Tabares F, Todorov A, Raj J, et al. Multi-mycotoxin contamination in Serbian maize during 2021-2023: climatic influences and implications for food and feed safety [J]. Toxins, 2025, 17(5): 227. |
| [27] | Akello J, Ortega-Beltran A, Katati B, et al. Prevalence of aflatoxin- and fumonisin-producing fungi associated with cereal crops grown in Zimbabwe and their associated risks in a climate change scenario [J]. Foods, 2021, 10(2): 287. |
| [28] | Bulgaru VC, Gras MA, Popa A, et al. Trends in mycotoxins co-occurrence in the complete feed for farm animals in southern Romania during 2021-2024 period [J]. Toxins, 2025, 17(4): 201. |
| [29] | Mahdjoubi CK, Arroyo-Manzanares N, Hamini-Kadar N, et al. Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria [J]. Toxins, 2020, 12(3): 194. |
| [30] | 杨晓冬, 赵凤, 罗靖, 等. 2022年四川省三地区谷物及制品真菌污染现状调查 [J]. 预防医学情报杂志, 2023, 39(7): 830-834. |
| Yang XD, Zhao F, Luo J, et al. Investigation on the fungal contamination of cereals and products in three regions of Sichuan province in 2022 [J]. J Prev Med Inf, 2023, 39(7): 830-834. | |
| [31] | 张弘弢, 姜雪洁, 李睿, 等. 黑龙江省10个奶牛场饲料中霉菌毒素暴露情况的调查 [J]. 黑龙江畜牧兽医, 2022(8): 101-108, 136. |
| Zhang HT, Jiang XJ, Li R, et al. Investigation on mycotoxin exposure in feeds of 10 dairy farms in Heilongjiang province [J]. Heilongjiang Anim Sci Vet Med, 2022(8): 101-108, 136. | |
| [32] | 程玲云, 傅骏青, 杨振东, 等. 玉米制品中伏马菌素污染情况调查研究 [J]. 食品安全导刊,2024, (26): 93-95, 99. |
| Cheng LY, Fu JQ, Yang ZD, et al. Investigation of fumonisin contamination in corn products [J]. China Food Saf Mag, 2024, (26): 93-95, 99. | |
| [33] | 赫丹, 徐剑宏, 仇剑波, 等. 伏马毒素的理化性质、检测方法及在我国玉米和玉米制品中的污染现状综述 [J]. 江苏农业科学, 2021, 49(21): 33-39. |
| He D, Xu JH, Qiu JB, et al. Physical and chemical properties, detection methods and pollution status of fumonisins in corn and its products in China: a review [J]. Jiangsu Agric Sci, 2021, 49(21): 33-39. | |
| [34] | 农业农村部. 饲料卫生标准 [S]. 2017-10-14, 2018-05-01. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||