Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (4): 76-87.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0814
Previous Articles Next Articles
TANG You1,2(
), ZHAO Jun-wei1, SUN Lan-xi2, LI Xiang1(
)
Received:2024-08-23
Online:2025-04-26
Published:2025-04-25
Contact:
LI Xiang
E-mail:tangyou@blsa.com.cn;lixiang@blsa.com.cn
TANG You, ZHAO Jun-wei, SUN Lan-xi, LI Xiang. Combined Application of Multi-omics Technologies in Plant Metabolic Pathway Resolution[J]. Biotechnology Bulletin, 2025, 41(4): 76-87.
Fig. 1 Common research methods for resolving plant metabolic pathways related to resistances to environmental stress (A), agronomic traits (B), and natural product synthesis (C) using combined multi-omics analysis
组学方法 Research method based on omics | 研究领域 Research area | 研究对象 Research object | 具体研究内容 Research content | 参考文献Reference |
|---|---|---|---|---|
基因组学 + 代谢组学 Genomics + metabolomics | 植物农艺性状 Agronomic traits | 番茄 | 现代商业番茄风味缺失的解析 | [ |
转录组学 + 代谢组学 Transcriptomics + metabolomics | 天然产物合成 Natural product synthesis | 秋水仙、本氏烟草 | 秋水仙碱生物合成 | [ |
| 桃儿七、本氏烟草 | 鬼臼毒素生物合成 | [ | ||
水仙花 青蒿 青蒿 青蒿 山茱萸 金线兰 三叶崖爬藤 枣叶 白及 烟草 茶树 苦荞麦 板蓝根 灵芝 | 石蒜科生物碱的生物合成途径解析 青蒿毛状体发育和青蒿素生物合成调控 青蒿腺毛状体的发育和角质层生物合成 青蒿非腺毛细胞中的青蒿合成 山茱萸主要活性物质的合成与积累 金线兰中黄酮类化合物合成基因研究 三叶崖爬藤不同生境下黄酮类化合物 合成研究 枣叶成熟过程黄酮类化合物积累机制研究 高产和低产白及多糖和黄酮含量差异成因研究 烟草吡啶生物碱相关合成基因研究 茶叶茶多酚、茶氨酸和咖啡因合成基因研究 苦荞麦黄酮类化合物生物合成及调控基因挖掘 板蓝根木质素生物合成的合成特征和调控机制 茉莉酸甲酯促进灵芝酸合成的分子机制 | [ [ [ [ [ [ [ [ [ [ [ [ [ [ | ||
植物农艺性状 Agronomic traits | 牡丹 | 牡丹花不同颜色(黄色和紫红色)形成与黄酮类物质含量及相关合成和调控基因互作关系研究 | [ | |
| 石榴 | 突尼斯软籽石榴的风味相关基因和转录因子挖掘 | [ | ||
| 山茶 | 山茶花颜色改变与香气之间的关系及代谢分配研究 | [ | ||
| 猕猴桃 | 红肉猕猴桃果实成熟颜色转换相关结构基因和转录因子挖掘 | [ | ||
| 枇杷 | 野生到栽培枇杷果实色素演变的代谢背景和相关基因研究 | [ | ||
| 水稻 | 水稻生命周期不同组织样本中代谢物和基因表达共性分析及新转录因子鉴定 | [ | ||
植物抗环境胁迫(生物) Environmental stress resistance (biotic) | 番茄、本氏烟草 | 番茄生产法卡林二醇所需的生物合成基因簇及其抗菌活性 | [ | |
植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 当归 肉苁蓉 水稻 天麻 黄芪 甘草 | 当归盐胁迫适应机制 肉苁蓉适应碱地、草地和沙地等不同生境的机制探究 亚洲栽培稻的耐寒适应性研究 低温胁迫对天麻生长发育的影响研究 黄芪的干旱胁迫适应性研究 甘草适应紫外线-B照射研究 | [ [ [ [ [ [ | |
转录组学 + 蛋白质组学 Transcriptomics + proteomics | 植物农艺性状 Agronomic traits | 粳稻 | 粳稻的休眠调控信号网络研究 | [ |
植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 高羊茅 | 高羊茅的低氮胁迫适应机制 | [ | |
天然产物合成 Natural product synthesis | 鹅掌草 萱草叶小金梅草 罂粟 | 鹅掌草三萜皂苷生物合成基因挖掘 萱草叶小金梅草萜类化合物合成相关 萜烯合酶研究 罂粟中血根碱生物合成酶研究 | [ [ [ | |
转录组学 + 空间代谢组学 Transcriptomics + spatial metabolomics | 天然产物合成 Natural product synthesis | 丹参、大叶鼠尾草 | 二萜类化合物在丹参和大叶鼠尾草中生成和积累机制 | [ |
转录组学 + 表型组学 Transcriptomics + phenomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 当归 | 当归在紫外线-B辐射增强条件下的适应机制 | [ |
代谢组学 + 表型组学 Metabolomics + phenomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 黄芪 | 黄芪主要品种应对紫外线-B的策略研究 | [ |
蛋白质组学 + 代谢组学 Proteomics + metabolomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 苹果 | 不同海拔对苹果成熟代谢物-蛋白质网络的影响 | [ |
比较基因组学 + 代谢组学 Comparative genomics + metabolomics | 植物农艺性状 Agronomic traits | 甜瓜、西瓜 | 甜瓜、西瓜中葫芦素合成途径解析 | [ |
比较基因组学 + 转录组学 Comparative genomics + transcriptomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 水稻 水稻 | 水稻抗金属离子胁迫性状基因座研究 水稻苗期耐不同金属离子的数量性状基因座研究 | [ [ |
转录组学 + 表观组学 Transcriptomics + epigenomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) 植物抗环境胁迫 Environmental stress resistance | 小麦 玉米、小麦 | DNA甲基化与小麦的金属胁迫耐受 玉米、小麦组蛋白修饰在生物和非生物胁迫中的作用 | [ [ |
转录组学 + 蛋白质组学 + 代谢组学 Transcriptomics + proteomics + metabolomics | 植物农艺性状 Agronomic traits | 油茶 | 中国海南岛热带油茶种子成熟过程中 主要代谢成分的合成与积累及基因共表达分析 | [ |
| 苹果 | 高氮施肥对苹果碳水化合物和黄酮类化合物的积累影响及成因研究 | [ | ||
| 荔枝 | 荔枝果肉在常温贮藏过程中的质量及代谢变化 | [ | ||
基因组学 + 转录组学 + 代谢组学 Genomics + transcriptomics + metabolomics | 植物农艺性状 Agronomic traits | 黄瓜 | 黄瓜苦味驯化丢失过程的解析 | [ |
| 黄瓜 | 基于基因组变异图谱的黄瓜驯化和多样性遗传基础分析 | [ | ||
| 番茄 | 全球范围内育种如何改变番茄果实代谢物含量研究 | [ | ||
天然产物合成 Natural product synthesis | 丹参 | 丹参酮14,16-醚(杂)环化形成D环机制 | [ | |
| 罂粟 | 罂粟苄基异喹啉生物碱生物合成基因挖掘 | [ | ||
| 雷公藤 | 雷公藤甲素合成中间步骤研究 | [ | ||
植物抗环境胁迫(生物) Environmental stress resistance (biotic) | 野生烟草 | 烟草植物对食草动物叶蝉的一条保守的非寄主抗性通路 | [ | |
| 玉米 | 玉米抵抗蚜虫的候选基因挖掘 | [ | ||
| 番茄 | 番茄代谢物与果实成熟及病原体防御的关联研究 | [ | ||
植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 月腺大戟、 狼毒大戟 | 不同纬度条件对月腺大戟或狼毒大戟两种同科植物的代谢影响 | [ | |
比较基因组学 + 转录组学 + 代谢组学 Comparative genomics + transcriptomics + metabolomics | 天然产物合成 Natural product synthesis | 铁皮石斛 | 铁皮石斛萜类合成酶基因及转录因子挖掘 | [ |
| 罂粟 | 罂粟苄基异喹啉生物碱生物合成途径及合成进化历史挖掘 | [ | ||
比较基因组学 + 转录组学 + 表观组学 Comparative genomics + transcriptomics + epigenomics | 天然产物合成 Natural product synthesis | 桔梗 | 桔梗根中桔梗皂苷生物合成基因挖掘 | [ |
表观组学 + 转录组学 + 代谢组学 Epigenomics + transcriptomics + metabolomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 大麦 | 野生大麦对干燥和潮湿土壤环境的适应机理 | [ |
基因组学 + 转录组学 + 泛转录组学 + 代谢组学 Genomics + transcriptomics + pan-transcriptomics + metabolomics | 植物农艺性状 Agronomic traits | 茶树 | 茶树风味相关代谢产物的调控网络及候选调控基因研究 | [ |
微生物组学 + 转录组学 + 代谢组学 Microbiomics + transcriptomics + metabolomics | 植物抗环境胁迫(生物) Environmental stress resistance (biotic) | 柑橘 金线兰 | 土壤环境和根瘤微生物对柑橘萜烯合成的影响 金线兰根共生真菌对其黄酮类化合物合成的影响 | [ [ |
Table 1 Applying cases of combined multi-omics analysis in the resolution of plant metabolic pathways
组学方法 Research method based on omics | 研究领域 Research area | 研究对象 Research object | 具体研究内容 Research content | 参考文献Reference |
|---|---|---|---|---|
基因组学 + 代谢组学 Genomics + metabolomics | 植物农艺性状 Agronomic traits | 番茄 | 现代商业番茄风味缺失的解析 | [ |
转录组学 + 代谢组学 Transcriptomics + metabolomics | 天然产物合成 Natural product synthesis | 秋水仙、本氏烟草 | 秋水仙碱生物合成 | [ |
| 桃儿七、本氏烟草 | 鬼臼毒素生物合成 | [ | ||
水仙花 青蒿 青蒿 青蒿 山茱萸 金线兰 三叶崖爬藤 枣叶 白及 烟草 茶树 苦荞麦 板蓝根 灵芝 | 石蒜科生物碱的生物合成途径解析 青蒿毛状体发育和青蒿素生物合成调控 青蒿腺毛状体的发育和角质层生物合成 青蒿非腺毛细胞中的青蒿合成 山茱萸主要活性物质的合成与积累 金线兰中黄酮类化合物合成基因研究 三叶崖爬藤不同生境下黄酮类化合物 合成研究 枣叶成熟过程黄酮类化合物积累机制研究 高产和低产白及多糖和黄酮含量差异成因研究 烟草吡啶生物碱相关合成基因研究 茶叶茶多酚、茶氨酸和咖啡因合成基因研究 苦荞麦黄酮类化合物生物合成及调控基因挖掘 板蓝根木质素生物合成的合成特征和调控机制 茉莉酸甲酯促进灵芝酸合成的分子机制 | [ [ [ [ [ [ [ [ [ [ [ [ [ [ | ||
植物农艺性状 Agronomic traits | 牡丹 | 牡丹花不同颜色(黄色和紫红色)形成与黄酮类物质含量及相关合成和调控基因互作关系研究 | [ | |
| 石榴 | 突尼斯软籽石榴的风味相关基因和转录因子挖掘 | [ | ||
| 山茶 | 山茶花颜色改变与香气之间的关系及代谢分配研究 | [ | ||
| 猕猴桃 | 红肉猕猴桃果实成熟颜色转换相关结构基因和转录因子挖掘 | [ | ||
| 枇杷 | 野生到栽培枇杷果实色素演变的代谢背景和相关基因研究 | [ | ||
| 水稻 | 水稻生命周期不同组织样本中代谢物和基因表达共性分析及新转录因子鉴定 | [ | ||
植物抗环境胁迫(生物) Environmental stress resistance (biotic) | 番茄、本氏烟草 | 番茄生产法卡林二醇所需的生物合成基因簇及其抗菌活性 | [ | |
植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 当归 肉苁蓉 水稻 天麻 黄芪 甘草 | 当归盐胁迫适应机制 肉苁蓉适应碱地、草地和沙地等不同生境的机制探究 亚洲栽培稻的耐寒适应性研究 低温胁迫对天麻生长发育的影响研究 黄芪的干旱胁迫适应性研究 甘草适应紫外线-B照射研究 | [ [ [ [ [ [ | |
转录组学 + 蛋白质组学 Transcriptomics + proteomics | 植物农艺性状 Agronomic traits | 粳稻 | 粳稻的休眠调控信号网络研究 | [ |
植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 高羊茅 | 高羊茅的低氮胁迫适应机制 | [ | |
天然产物合成 Natural product synthesis | 鹅掌草 萱草叶小金梅草 罂粟 | 鹅掌草三萜皂苷生物合成基因挖掘 萱草叶小金梅草萜类化合物合成相关 萜烯合酶研究 罂粟中血根碱生物合成酶研究 | [ [ [ | |
转录组学 + 空间代谢组学 Transcriptomics + spatial metabolomics | 天然产物合成 Natural product synthesis | 丹参、大叶鼠尾草 | 二萜类化合物在丹参和大叶鼠尾草中生成和积累机制 | [ |
转录组学 + 表型组学 Transcriptomics + phenomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 当归 | 当归在紫外线-B辐射增强条件下的适应机制 | [ |
代谢组学 + 表型组学 Metabolomics + phenomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 黄芪 | 黄芪主要品种应对紫外线-B的策略研究 | [ |
蛋白质组学 + 代谢组学 Proteomics + metabolomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 苹果 | 不同海拔对苹果成熟代谢物-蛋白质网络的影响 | [ |
比较基因组学 + 代谢组学 Comparative genomics + metabolomics | 植物农艺性状 Agronomic traits | 甜瓜、西瓜 | 甜瓜、西瓜中葫芦素合成途径解析 | [ |
比较基因组学 + 转录组学 Comparative genomics + transcriptomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 水稻 水稻 | 水稻抗金属离子胁迫性状基因座研究 水稻苗期耐不同金属离子的数量性状基因座研究 | [ [ |
转录组学 + 表观组学 Transcriptomics + epigenomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) 植物抗环境胁迫 Environmental stress resistance | 小麦 玉米、小麦 | DNA甲基化与小麦的金属胁迫耐受 玉米、小麦组蛋白修饰在生物和非生物胁迫中的作用 | [ [ |
转录组学 + 蛋白质组学 + 代谢组学 Transcriptomics + proteomics + metabolomics | 植物农艺性状 Agronomic traits | 油茶 | 中国海南岛热带油茶种子成熟过程中 主要代谢成分的合成与积累及基因共表达分析 | [ |
| 苹果 | 高氮施肥对苹果碳水化合物和黄酮类化合物的积累影响及成因研究 | [ | ||
| 荔枝 | 荔枝果肉在常温贮藏过程中的质量及代谢变化 | [ | ||
基因组学 + 转录组学 + 代谢组学 Genomics + transcriptomics + metabolomics | 植物农艺性状 Agronomic traits | 黄瓜 | 黄瓜苦味驯化丢失过程的解析 | [ |
| 黄瓜 | 基于基因组变异图谱的黄瓜驯化和多样性遗传基础分析 | [ | ||
| 番茄 | 全球范围内育种如何改变番茄果实代谢物含量研究 | [ | ||
天然产物合成 Natural product synthesis | 丹参 | 丹参酮14,16-醚(杂)环化形成D环机制 | [ | |
| 罂粟 | 罂粟苄基异喹啉生物碱生物合成基因挖掘 | [ | ||
| 雷公藤 | 雷公藤甲素合成中间步骤研究 | [ | ||
植物抗环境胁迫(生物) Environmental stress resistance (biotic) | 野生烟草 | 烟草植物对食草动物叶蝉的一条保守的非寄主抗性通路 | [ | |
| 玉米 | 玉米抵抗蚜虫的候选基因挖掘 | [ | ||
| 番茄 | 番茄代谢物与果实成熟及病原体防御的关联研究 | [ | ||
植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 月腺大戟、 狼毒大戟 | 不同纬度条件对月腺大戟或狼毒大戟两种同科植物的代谢影响 | [ | |
比较基因组学 + 转录组学 + 代谢组学 Comparative genomics + transcriptomics + metabolomics | 天然产物合成 Natural product synthesis | 铁皮石斛 | 铁皮石斛萜类合成酶基因及转录因子挖掘 | [ |
| 罂粟 | 罂粟苄基异喹啉生物碱生物合成途径及合成进化历史挖掘 | [ | ||
比较基因组学 + 转录组学 + 表观组学 Comparative genomics + transcriptomics + epigenomics | 天然产物合成 Natural product synthesis | 桔梗 | 桔梗根中桔梗皂苷生物合成基因挖掘 | [ |
表观组学 + 转录组学 + 代谢组学 Epigenomics + transcriptomics + metabolomics | 植物抗环境胁迫(非生物) Environmental stress resistance (abiotic) | 大麦 | 野生大麦对干燥和潮湿土壤环境的适应机理 | [ |
基因组学 + 转录组学 + 泛转录组学 + 代谢组学 Genomics + transcriptomics + pan-transcriptomics + metabolomics | 植物农艺性状 Agronomic traits | 茶树 | 茶树风味相关代谢产物的调控网络及候选调控基因研究 | [ |
微生物组学 + 转录组学 + 代谢组学 Microbiomics + transcriptomics + metabolomics | 植物抗环境胁迫(生物) Environmental stress resistance (biotic) | 柑橘 金线兰 | 土壤环境和根瘤微生物对柑橘萜烯合成的影响 金线兰根共生真菌对其黄酮类化合物合成的影响 | [ [ |
| 1 | 王莉, 史玲玲, 张艳霞, 等. 植物次生代谢物途径及其研究进展 [J]. 武汉植物学研究, 2007, 25(5): 1-9. |
| Wang L, Shi LL, Zhang YX, et al. Biosynthesis and regulation of the secondary metabolites in plants [J]. Jounal of Wuhan Botanical Research, 2007, 25(5): 1-9. | |
| 2 | Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future [J]. Science, 2016, 353(6305): 1232-1236. |
| 3 | Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid [J]. Front Plant Sci, 2014, 5: 4. |
| 4 | Agurla S, Gahir S, Munemasa S, et al. Mechanism of stomatal closure in plants exposed to drought and cold stress [J]. Adv Exp Med Biol, 2018, 1081: 215-232. |
| 5 | Kim JM, To TK, Matsui A, et al. Acetate-mediated novel survival strategy against drought in plants [J]. Nat Plants, 2017, 3: 17097. |
| 6 | Salehin M, Li BH, Tang M, et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels [J]. Nat Commun, 2019, 10(1): 4021. |
| 7 | Curtis PD, Curtis GB, Miller WB. Relative resistance of ornamental flowering bulbs to feeding damage by voles [J]. HortTechnology, 19(3): 499-503. |
| 8 | Balkema-Boomstra AG, Zijlstra S, Verstappen FA, et al. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.) [J]. J Chem Ecol, 2003, 29(1): 225-235. |
| 9 | Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads [J]. Biochim Biophys Acta, 2013, 1830(6): 3670-3695. |
| 10 | Zhu LY, Chen LQ. Progress in research on paclitaxel and tumor immunotherapy [J]. Cell Mol Biol Lett, 2019, 24: 40. |
| 11 | 伍海航, 何秋伶, 张学敏, 等. 多组学联用在药用植物次生代谢调控中的应用 [J/OL]. 分子植物育种, 2022: 1-11. . |
| Wu HH, He QL, Zhang XM, et al. Application of multi-group association in regulation of secondary metabolism in medicinal plants [J/OL]. Mol Plant Breed, 2022: 1-11. . | |
| 12 | 季元, 于冰, 陈偲学. 多组学技术在植物应答非生物胁迫中的研究进展 [J]. 中国农学通报, 2023, 39(23): 1-7. |
| Ji Y, Yu B, Chen SX. Research progress of multi-omics technologies in plant response to abiotic stress [J]. Chin Agric Sci Bull, 2023, 39(23): 1-7. | |
| 13 | 杨泽敏, 高旦, 王业, 等. 多组学技术揭示药用植物逆境响应及次生代谢调控机制的研究进展 [J]. 中药材, 2024, (4): 1062-1070. |
| Yang ZM, Gao D, Wang Y, et al. Advances in multi-omics techniques revealing the mechanisms of medicinal plants' response to adversity and secondary metabolism regulation [J]. Journal of Chinese Medicinal Materials, 2024, (4): 1062-1070. | |
| 14 | 梁浩, 孙海, 钱佳奇, 等. 药用植物代谢调控的组学研究进展 [J]. 中药材, 2023, 46(8): 2085-2092. |
| Liang H, Sun H, Qian JQ, et al. Advances in metabonomic regulation of medicinal plants [J]. J Chin Med Mater, 2023, 46(8): 2085-2092. | |
| 15 | 张春芝, 周倩, 吴瑶瑶, 等. 基因组学研究助力马铃薯育种方式的变革 [J]. 生物技术通报, 2024, 40(10): 1-8. |
| Zhang CZ, Zhou Q, Wu YY, et al. Genomics study accelerates the revolution of potato breeding [J]. Biotechnol Bull, 2024, 40(10): 1-8. | |
| 16 | 王琰琰, 王剑, 潘勇, 等. 硅在植物中抵御生物胁迫机制的研究进展 [J]. 植物生理学报, 2024, 60(1): 35-44. |
| Wang YY, Wang J, Pan Y, et al. Mechanism research advances in plant biotic stress resistance regulated by silicon [J]. Plant Physiology Journal, 2024, 60(1): 35-44. | |
| 17 | Bai YC, Yang CQ, Halitschke R, et al. Natural history-guided omics reveals plant defensive chemistry against leafhopper pests [J]. Science, 2022, 375(6580): eabm2948. |
| 18 | Jeon JE, Kim JG, Fischer CR, et al. A pathogen-responsive gene cluster for highly modified fatty acids in tomato [J]. Cell, 2020, 180(1): 176-187.e19. |
| 19 | Zhang YY, Lv M, Xu H. Insecticidal activity of twin compounds from podophyllotoxin and cytisine [J]. Bioorg Med Chem Lett, 2021, 43: 128104. |
| 20 | Liu YQ, Feng G, Yang L, et al. Podophyllotoxin-derived insecticidal agents: part XIII—evaluation of insecticidal activity of podophyllotoxin derivatives against Brontispa longissima [J]. Nat Prod Res, 2011, 25(16): 1570-1576. |
| 21 | Lau W, Sattely ES. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone [J]. Science, 2015, 349(6253): 1224-1228. |
| 22 | Wang TY, Wang KJ, Wang CH, et al. Combining quantitative trait locus mapping with multiomics profiling reveals genetic control of corn leaf aphid (Rhopalosiphum maidis) resistance in maize [J]. J Exp Bot, 2023, 74(12): 3749-3764. |
| 23 | Szymański J, Bocobza S, Panda S, et al. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response [J]. Nat Genet, 2020, 52(10): 1111-1121. |
| 24 | 张国壮, 陈士林, 董林林. 中药微生物组学及其研究策略 [J]. 中国中药杂志, 2023, 48(3): 596-607. |
| Zhang GZ, Chen SL, Dong LL. Traditional Chinese medicine microbiomics and its research strategies [J]. China J Chin Mater Med, 2023, 48(3): 596-607. | |
| 25 | Su JM, Wang YY, Bai M, et al. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi’ [J]. Microbiome, 2023, 11(1): 61. |
| 26 | Zhang Y, Li YY, Guo SX. Effects of the mycorrhizal fungus Ceratobasidium sp. AR2 on growth and flavonoid accumulation in Anoectochilus roxburghii [J]. PeerJ, 2020, 8: e8346. |
| 27 | 陈佳佳, 仲雨晴. 多组学合分析在植物重金属胁迫应答机制中的研究进展 [J]. 苏州科技大学学报: 自然科学版, 2023, 40(4): 1-8. |
| Chen JJ, Zhong YQ. Multi-omics analysis in plant response mechanisms to heavy metal stress [J]. J Suzhou Univ Sci Technol Nat Sci Ed, 2023, 40(4): 1-8. | |
| 28 | 朱鸿宇, 王盛, 张月, 等. 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析 [J]. 中国科学: 生命科学, 2020, 50(6): 623-632. |
| Zhu HY, Wang S, Zhang Y, et al. QTL excavation and analysis of candidate genes in contents of As, Cu, Fe, Hg and Zn in rice grain [J]. Sci Sin Vitae, 2020, 50(6): 623-632. | |
| 29 | 林晗, 徐江民, 胡瑚倩, 等. 水稻耐金属离子胁迫的QTL分析 [J]. 中国水稻科学, 2018, 32(1): 23-34. |
| Lin H, Xu JM, Hu HQ, et al. Identifying of QTLs for resistance to metal irons stress in rice [J]. Chin J Rice Sci, 2018, 32(1): 23-34. | |
| 30 | 李小冬, 舒健虹, 于二汝, 等. 高羊茅在低氮胁迫下的蛋白质组学分析 [J]. 草业学报, 2016, 25(3): 67-76. |
| Li XD, Shu JH, Yu ER, et al. Proteomic analysis of nitrogen stress-responsive proteins in the leaves of tall fescue [J]. Acta Prataculturae Sin, 2016, 25(3): 67-76. | |
| 31 | Zhang MZ, Yu ZM, Zeng DQ, et al. Transcriptome and metabolome reveal salt-stress responses of leaf tissues from Dendrobium officinale [J]. Biomolecules, 2021, 11(5): 736. |
| 32 | Zhang JY, Luo W, Zhao Y, et al. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice [J]. New Phytol, 2016, 211(4): 1295-1310. |
| 33 | Zheng H, Yu MY, Han Y, et al. Comparative transcriptomics and metabolites analysis of two closely related Euphorbia species reveal environmental adaptation mechanism and active ingredients difference [J]. Front Plant Sci, 2022, 13: 905275. |
| 34 | Jia X, Sun CS, Zuo YC, et al. Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress [J]. BMC Genomics, 2016, 17: 188. |
| 35 | Cai SG, Shen QF, Huang YQ, et al. Multi-omics analysis reveals the mechanism underlying the edaphic adaptation in wild barley at evolution slope (tabigha) [J]. Adv Sci, 2021, 8(20): e2101374. |
| 36 | Karagiannis E, Michailidis M, Tanou G, et al. Decoding altitude-activated regulatory mechanisms occurring during apple peel ripening [J]. Hortic Res, 2020, 7: 120. |
| 37 | Liu Y, Liu J, Wang HZ, et al. Comparison of the global metabolic responses to UV-B radiation between two medicinal Astragalus species: an integrated metabolomics strategy [J]. Environ Exp Bot, 2020, 176: 104094. |
| 38 | Peng T, Wang YQ, Yang T, et al. Physiological and biochemical responses, and comparative transcriptome profiling of two Angelica sinensis cultivars under enhanced ultraviolet-B radiation [J]. Front Plant Sci, 2021, 12: 805407. |
| 39 | Zhang X, Ding XL, Ji YX, et al. Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation [J]. Sci Rep, 2018, 8(1): 6144. |
| 40 | Tieman D, Zhu GT, Resende MFR Jr, et al. A chemical genetic roadmap to improved tomato flavor [J]. Science, 2017, 355(6323): 391-394. |
| 41 | Shang Y, Ma YS, Zhou Y, et al. Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber [J]. Science, 2014, 346(6213): 1084-1088. |
| 42 | Zhou Y, Ma YS, Zeng JG, et al. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae [J]. Nat Plants, 2016, 2: 16183. |
| 43 | Luo XN, Sun DY, Wang S, et al. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers [J]. Hortic Res, 2021, 8(1): 235. |
| 44 | Yuan L, Yun YR, Tian J, et al. Transcription profile analysis for biosynthesis of flavor volatiles of Tunisian soft-seed pomegranate arils [J]. Food Res Int, 2022, 156: 111304. |
| 45 | Mei X, Wan SH, Lin CY, et al. Integration of metabolome and transcriptome reveals the relationship of benzenoid-phenylpropanoid pigment and aroma in purple tea flowers [J]. Front Plant Sci, 2021, 12: 762330. |
| 46 | Ye LX, Bai FX, Zhang L, et al. Transcriptome and metabolome analyses of anthocyanin biosynthesis in post-harvest fruits of a full red-type kiwifruit (Actinidia arguta) ‘Jinhongguan’ [J]. Front Plant Sci, 2023, 14: 1280970. |
| 47 | Su WB, Zhu CQ, Fan ZQ, et al. Comprehensive metabolome and transcriptome analyses demonstrate divergent anthocyanin and carotenoid accumulation in fruits of wild and cultivated loquats [J]. Front Plant Sci, 2023, 14: 1285456. |
| 48 | Yang CK, Shen SQ, Zhou S, et al. Rice metabolic regulatory network spanning the entire life cycle [J]. Mol Plant, 2022, 15(2): 258-275. |
| 49 | Guo NH, Tang SJ, Wang JY, et al. Transcriptome and proteome analysis revealed that hormone and reactive oxygen species synergetically regulate dormancy of introgression line in rice (Oryza sativa L.) [J]. Int J Mol Sci, 2023, 24(7): 6088. |
| 50 | Ye ZC, Yu J, Yan WP, et al. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera [J]. Hortic Res, 2021, 8(1): 157. |
| 51 | Zhu GT, Wang SC, Huang ZJ, et al. Rewiring of the fruit metabolome in tomato breeding [J]. Cell, 2018, 172(1-2): 249-261.e12. |
| 52 | Wang F, Ge SF, Xu XX, et al. Multiomics analysis reveals new insights into the apple fruit quality decline under high nitrogen conditions [J]. J Agric Food Chem, 2021, 69(19): 5559-5572. |
| 53 | Guo XM, Luo T, Han DM, et al. Multi-omics analysis revealed room temperature storage affected the quality of Litchi by altering carbohydrate metabolism [J]. Sci Hortic, 2022, 293: 110663. |
| 54 | Kong WL, Jiang MW, Wang YB, et al. Pan-transcriptome assembly combined with multiple association analysis provides new insights into the regulatory network of specialized metabolites in the tea plant Camellia sinensis [J]. Hortic Res, 2022, 9: uhac100. |
| 55 | Nett RS, Lau W, Sattely ES. Discovery and engineering of colchicine alkaloid biosynthesis [J]. Nature, 2020, 584(7819): 148-153. |
| 56 | Mehta N, Meng YF, Zare R, et al. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes [J]. Cell, 2024, 187(20): 5620-5637.e10. |
| 57 | Ma Y, Cui GH, Chen T, et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza [J]. Nat Commun, 2021, 12(1): 685. |
| 58 | Xia J, Lou GG, Zhang L, et al. Unveiling the spatial distribution and molecular mechanisms of terpenoid biosynthesis in Salvia miltiorrhiza and S. grandifolia using multi-omics and DESI-MSI [J]. Hortic Res, 2023, 10(7): uhad109. |
| 59 | Li QS, Ramasamy S, Singh P, et al. Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy [J]. Nat Commun, 2020, 11(1): 1190. |
| 60 | 崔占虎, 黄显章, 李超, 等. 多组学策略在药用植物表皮毛次生代谢调控中的应用与展望 [J]. 中国现代中药, 2021, 23(3): 548-554. |
| Cui ZH, Huang XZ, Li C, et al. Application and prospect of multi-omics in regulation of secondary metabolism of trichome from medicinal plant [J]. Mod Chin Med, 2021, 23(3): 548-554. | |
| 61 | Tan HX, Xiao L, Gao SH, et al. Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua [J]. Mol Plant, 2015, 8(9): 1396-1411. |
| 62 | Tu LC, Su P, Zhang ZR, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis [J]. Nat Commun, 2020, 11(1): 971. |
| 63 | Chen J, Zhu FY, Liu L, et al. Integrative analyses of transcriptome and metabolome shed light on the regulation of secondary metabolites in pseudobulbs of two Bletilla striata (Thunb.) Reichb.f. varieties [J]. J Appl Res Med Aromat Plants, 2021, 20: 100280. |
| 64 | Kaminski KP, Bovet L, Laparra H, et al. Alkaloid chemophenetics and transcriptomics of the Nicotiana genus [J]. Phytochemistry, 2020, 177: 112424. |
| 65 | Tai YL, Wei CL, Yang H, et al. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera) [J]. BMC Plant Biol, 2015, 15: 190. |
| 66 | Jiang AL, Liu YN, Liu R, et al. Integrated proteomics and metabolomics analysis provides insights into ganoderic acid biosynthesis in response to methyl jasmonate in Ganoderma lucidum [J]. Int J Mol Sci, 2019, 20(24): 6116. |
| 67 | Zhan CS, Li XH, Zhao ZY, et al. Comprehensive analysis of the triterpenoid saponins biosynthetic pathway in Anemone flaccida by transcriptome and proteome profiling [J]. Front Plant Sci, 2016, 7: 1094. |
| 68 | Kim J, Kang SH, Park SG, et al. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant [J]. Hortic Res, 2020, 7: 112. |
| 69 | Han ZG, Xu ZW, Xu Y, et al. Phylogenomics reveal DcTPS-mediated terpenoid accumulation and environmental response in Dendrobium catenatum [J]. Ind Crops Prod, 2024, 208: 117799. |
| 70 | Yang XF, Gao SH, Guo L, et al. Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway [J]. Nat Commun, 2021, 12(1): 6030. |
| 71 | Dong BR, Xu ZH, Wang XX, et al. TrichomeLess Regulator 3 is required for trichome initial and cuticle biosynthesis in Artemisia annua [J]. Mol Hortic, 2024, 4(1): 10. |
| 72 | Judd R, Caleb Bagley M, Li MZ, et al. Artemisinin biosynthesis in non-glandular trichome cells of Artemisia annua [J]. Mol Plant, 2019, 12(5): 704-714. |
| 73 | Rai A, Rai M, Kamochi H, et al. Multiomics-based characterization of specialized metabolites biosynthesis in Cornus Officinalis [J]. DNA Res, 2020, 27(2): dsaa009. |
| 74 | Chen Y, Pan WY, Jin S, et al. Combined metabolomic and transcriptomic analysis reveals key candidate genes involved in the regulation of flavonoid accumulation in Anoectochilus roxburghii [J]. Process Biochem, 2020, 91: 339-351. |
| 75 | Yin SY, Cui HR, Zhang L, et al. Transcriptome and metabolome integrated analysis of two ecotypes of Tetrastigma hemsleyanum reveals candidate genes involved in chlorogenic acid accumulation [J]. Plants, 2021, 10(7): 1288. |
| 76 | Li SP, Deng BL, Tian S, et al. Metabolic and transcriptomic analyses reveal different metabolite biosynthesis profiles between leaf buds and mature leaves in Ziziphus jujuba mill [J]. Food Chem, 2021, 347: 129005. |
| 77 | Li HY, Lv QY, Ma C, et al. Metabolite profiling and transcriptome analyses provide insights into the flavonoid biosynthesis in the developing seed of Tartary buckwheat (Fagopyrum tataricum) [J]. J Agric Food Chem, 2019, 67(40): 11262-11276. |
| 78 | Zhang L, Chen JF, Zhou X, et al. Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort [J]. Plant Biotechnol J, 2016, 14(12): 2217-2227. |
| 79 | Sun X, Li L, Pei J, et al. Metabolome and transcriptome profiling reveals quality variation and underlying regulation of three ecotypes for Cistanche deserticola [J]. Plant Mol Biol, 2020, 102(3): 253-269. |
| 80 | 周春艳, 狄永国, 仇全雷, 等. 转录组和代谢组联合分析低温胁迫对天麻生长发育的影响 [J]. 分子植物育种, 2023, 21(1): 110-122. |
| Zhou CY, Di YG, Qiu QL, et al. Effects of low temperature stress on growth and development of G. elata were analyzed by transcriptome and metabolome [J]. Mol Plant Breed, 2023, 21(1): 110-122. | |
| 81 | Tomescu MS, Sooklal SA, Ntsowe T, et al. Transcriptome and proteome of the corm, leaf and flower of Hypoxis hemerocallidea (African potato) [J]. PLoS One, 2021, 16(7): e0253741. |
| 82 | Desgagné-Penix I, Khan MF, Schriemer DC, et al. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures [J]. BMC Plant Biol, 2010, 10: 252. |
| 83 | Shafiq S, Zeb Q, Ali A, et al. Lead, cadmium and zinc phytotoxicity alter DNA methylation levels to confer heavy metal tolerance in wheat [J]. Int J Mol Sci, 2019, 20(19): 4676. |
| 84 | Zheng LW, Ma SJ, Shen DD, et al. Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses [J]. BMC Plant Biol, 2021, 21(1): 543. |
| 85 | Qi JJ, Liu X, Shen D, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity [J]. Nat Genet, 2013, 45(12): 1510-1515. |
| 86 | 安绍维. 多组学大数据整合分析推动人类未来的健康发展 [J]. 张江科技评论, 2019(6): 12-14. |
| An SW. Multi-disciplinary big data integration analysis promotes the healthy development of mankind in the future [J]. Zhangjiang Technol Rev, 2019(6): 12-14. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||