[1] Bieniossek C, Imasaki T, Takagi Y, et al. MultiBac:expanding the research toolbox for multiprotein complexes[J]. Trends Biochem Sci, 2012, 37:49-57.
[2] Kornberg RD. Mediator and the mechanism of transcriptional activation[J]. Trends Biochem Sci, 2005, 30:235-239.
[3] Boube M, Joulia L, Cribbs DL, et al. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man[J]. Cell, 2002, 110:143-151.
[4] Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation[J]. Nat Rev Genet, 2010, 11:761-772.
[5] Bjorklund S, Gustafsson CM. The yeast Mediator complex and its regulation[J]. Trends Biochem Sci, 2005, 30:240-244.
[6] Guglielmi B, van Berkum NL, Klapholz B, et al. A high resolution protein interaction map of the yeast Mediator complex[J]. Nucleic Acids Res, 2004, 32:5379-5391.
[7] Firestein R, Bass AJ, Kim SY, et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity[J]. Nature, 2008, 455:547-551.
[8] Rump P, Niessen RC, Verbruggen KT, et al. A novel mutation in MED12 causes FG syndrome(Opitz-Kaveggia syndrome)[J]. Clin Genet, 2011, 79:183-188.
[9] Graham JM Jr, Visootsak J, Dykens E, et al. Behavior of 10 patients with FG syndrome(Opitz-Kaveggia syndrome)and the p.R961W mutation in the MED12 gene[J]. Am J Med Genet A, 2008, 146A:3011-3007.
[10] Makinen N, Mehine M, Tolvanen J, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas[J]. Science, 2011, 334:252-255.
[11] Berti L, Mittler G, Przemeck GK, et al. Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit[J]. Genomics, 2001, 74:320-332.
[12] Kaufmann R, Straussberg R, Mandel H, et al. Infantile cerebral and cerebellar atrophy is associated with a mutation in the MED17 subunit of the transcription preinitiation mediator complex[J]. Am J Hum Genet, 2010, 87:667-670.
[13] Hashimoto S, Boissel S, Zarhrate M, et al. MED23 mutation links intellectual disability to dysregulation of immediate early gene expression[J]. Science, 2011, 333:1161-1163.
[14] Rieker RJ, Agaimy A, Moskalev EA, et al. Mutation status of the mediator complex subunit 12(MED12)in uterine leiomyomas and concurrent/metachronous multifocal peritoneal smooth muscle nodules(leiomyomatosis peritonealis disseminata)[J]. Pathology, 2013, 45:388-392.
[15] Cai G, Imasaki T, Takagi Y, et al. Mediator structural conservation and implications for the regulation mechanism[J]. Structure, 2009, 17:559-567.
[16] Davis JA, Takagi Y, Kornberg RD, et al. Structure of the yeast RNA polymerase II holoenzyme:Mediator conformation and polymerase interaction[J]. Mol Cell, 2002, 10:409-515.
[17] Conaway RC, Conaway JW. Origins and activity of the mediator complex[J]. Semin Cell Dev Biol, 2011, 22:729-734.
[18] Thompson CM, Koleske AJ, Chao DM, et al. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast[J]. Cell, 1993, 73:1361-1375.
[19] Hengartner CJ, Thompson CM, Zhang J, et al. Association of an activator with an RNA polymerase II holoenzyme[J]. Genes Dev, 1995, 9:897-910.
[20] Lee YC, Park JM, Min S, et al. An activator binding module of yeast RNA polymerase II holoenzyme[J]. Mol Cell Biol, 1999, 19:2967-2976.
[21] Taatjes DJ. The human Mediator complex:a versatile, genome-wide regulator of transcription[J]. Trends Biochem Sci, 2010, 35:315-22.
[22] Balamotis MA, Pennella MA, Stevens JL, et al. Complexity in transcription control at the activation domain-mediator interface[J]. Sci Signal, 2009, 2:ra20.
[23] Koh SS, Ansari AZ, Ptashne M, et al. An activator target in the RNA polymerase II holoenzyme[J]. Mol Cell, 1998, 1:895-904.
[24] Takagi Y, Calero G, Komori H, et al. Head module control of mediator interactions[J]. Mol Cell, 2006, 23:355-364.
[25] Cai G, Imasaki T, Yamada K, et al. Mediator head module structure and functional interactions[J]. Nat Struct Mol Biol, 2010, 17:273-279.
[26] Imasaki T, Calero G, Cai G, et al. Architecture of the Mediator head module[J]. Nature, 2011, 475:240-243.
[27] Pines J. Cubism and the cell cycle:the many faces of the APC/C[J]. Nat Rev Mol Cell Biol, 2011, 12:427-438.
[28] Sullivan M, Morgan DO. Finishing mitosis, one step at a time[J]. Nat Rev Mol Cell Biol, 2007, 8:894-903.
[29] Barford D. Structural insights into anaphase-promoting complex function and mechanism[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366:3605-3624.
[30] Schreiber A, Stengel F, Zhang Z, et al. Structural basis for the subunit assembly of the anaphase-promoting complex[J]. Nature, 2011, 470:227-232.
[31] Zhang Z, Yang J, Kong EH, et al. Recombinant expression, reconstitution and structure of human anaphase-promoting complex(APC/C)[J]. Biochem J, 2013, 449:365-371.
[32] da Fonseca PC, Kong EH, Zhang Z, et al. Structures of APC/C(Cdh1)with substrates identify Cdh1 and Apc10 as the D-box co-receptor[J]. Nature, 2011, 470:274-278.
[33] Uzunova K, Dye BT, Schutz H, et al. APC15 mediates CDC20 autoubiquitylation by APC/C(MCC)and disassembly of the mitotic checkpoint complex[J]. Nat Struct Mol Biol, 2012, 19:1116-123.
[34] Berger I, Fitzgerald DJ, Richmond TJ. Baculovirus expression system for heterologous multiprotein complexes[J]. Nat Biotechnol, 2004, 22:1583-1587.
[35] Bitinaite J, Rubino M, Varma KH, et al. USER friendly DNA engineering and cloning method by uracil excision[J]. Nucleic Acids Res, 2007, 35:1992-2002.
[36] Geu-Flores F, Nour-Eldin HH, Nielsen MT, et al. USER fusion:a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products[J]. Nucleic Acids Res, 2007, 35:e55.
[37] Hutchins JR, Toyoda Y, Hegemann B, et al. Systematic analysis of human protein complexes identifies chromosome segregation proteins[J]. Science, 2010, 328:593-599.
[38] Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time[J]. Nat Rev Mol Cell Biol, 2007, 8:379-393.
[39] Chao WC, Kulkarni K, Zhang Z, et al. Structure of the mitotic checkpoint complex[J]. Nature, 2012, 484:208-213.
[40] Herzog F, Primorac I, Dube P, et al. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex[J]. Science, 2009, 323:1477-1481.
[41] Cler E, Papai G, Schultz P, et al. Recent advances in understanding the structure and function of general transcription factor TFIID[J]. Cell Mol Life Sci, 2009, 66:2123-34.
[42] Muller F, Zaucker A, Tora L. Developmental regulation of transcrip-tion initiation:more than just changing the actors[J]. Curr Opin Genet Dev, 2010, 20:533-40.
[43] Papai G, Weil PA, Schultz P. New insights into the function of transcription factor TFIID from recent structural studies[J]. Curr Opin Genet Dev, 2011, 21:219-224.
[44] Wright KJ, Marr MT 2nd, Tjian R. TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter[J]. Proc Natl Acad Sci USA, 2006, 103:12347-12352.
[45] Papai G, Tripathi MK, Ruhlmann C, et al. Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID[J]. Structure, 2009, 17:363-373.
[46] Cianfrocco MA, Kassavetis GA, Grob P, et al. Human TFIID binds to core promoter DNA in a reorganized structural state[J]. Cell, 2013, 152:120-131.
[47] Sharon M, Robinson CV. The role of mass spectrometry in structure elucidation of dynamic protein complexes[J]. Annu Rev Biochem, 2007, 76:167-193.
[48] Bieniossek C, Papai G, Schaffitzel C, et al. The architecture of human general transcription factor TFIID core complex[J]. Nature, 2013, 493:699-702.
[49] Vijayachandran LS, Viola C, Garzoni F, et al. Robots, pipelines, polyproteins:enabling multiprotein expression in prokaryotic and eukaryotic cells[J]. J Struct Biol, 2011, 175:198-208. |