[1] Mendez E, Moreno A, Colilla F, et al. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm[J]. Eur J Biochem, 1990, 194:533-539.
[2] Garcia OF, Molina A, Alamillo JM, et al. Plant defense peptides[J]. Biopolymers, 1998, 47(6):479-491.
[3] Fant F, Vranken W, Broekaert W, et al. Determination of the three dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR[J]. J Mol Biol, 1998, 279:257-270.
[4] Almeida MS, Cabral K, Kurtenbach E, et al. Solution structure of Pisum sativum defensin 1 by high resolution NMR:plant defensins, identical backbone with different mechanisms of action[J]. J Mol Biol, 2002, 315:749-757.
[5] Liu YJ, Cheng CS, Lai SM, et al. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids[J]. Proteins, 2006, 63:777-786.
[6] Song XM, Zhang M, Zhou ZC, et al. Ultra-high resolution crystal structure of a dimeric defensin SPE10[J]. FEBS Letters, 2011, 585:300-306.
[7] Mendez E, Rocher A, Calero M, et al. Primary structure of ω-hordothionin, a member of a novel family of thionis from barley endosperm, and its inhibition of protein synthesis in eukaryotic and prokaryotic cell-free systems[J]. Eur J Biochem, 1996, 239:67-73.
[8] Chen KC, Lin CY, Kuan CC, et al. A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid[J]. J Agric Food Chem, 2002, 50:7258-7263.
[9] Wijaya R, Neumann GM, Condron R, et al. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin[J]. Plant Sci, 2000, 159:243-255.
[10] Wong JH, Ng TB. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase[J]. Peptides, 2005, 26:1120-1126.
[11] Anaya-Lopez JL, Lopez-Meza JE, Baizabal-Aguirre VM, et al. Fungicidal and cytotoxic activity of a Capsicum chinense defensin expressed by endothelial cells[J]. Biotechnol Lett, 2006, 28:1101-1108.
[12] Wang SY, Rao PF, Ye XY. Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency[J]. Appl Microbiol Biotechnol, 2009, 82:79-86.
[13] Lobo DS, Pereira IB, Fragel-Madeira L, et al. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle[J]. Biochemistry 2007, 46:987-996.
[14] Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment[J]. Cell Mol Life Sci, 2005, 62:784-790.
[15] Kushmerick C, Castro MS, Cruz JS, et al. Functional and structural features of γ-zeathionins, a new class of sodium channel blockers[J]. FEBS Lett, 1998, 440:302-306.
[16] Spelbrink RG, Dilmac N, Allen A, et al. Differential antifungal and calcium channel blocking activity among structurally related plant defensins[J]. Plant Physiol, 2004, 135:2055-2067.
[17] Mirouze M, Sels J, Richard O, et al. A putative novel role for plant defensins:a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance[J]. Plant J, 2006, 47:329-342.
[18] 张杰, 张双全. 抗真菌肽对真菌作用机制研究进展[J]. 生物化学与生物物理进展, 2005, 32(1):13-17.
[19] Caaverio JM, Molina A, Gonzalez M, et al. Differential effects of five types of antipathogenic plant peptides on model membranes[J]. FEBS Lett, 1997, 410:338-342.
[20] 张宏, 胡春香, 张德禄, 等. 植物防御素研究进展[J]. 西北师范大学学报:自然科学版, 2006, 42(5):112-117.
[21] Aerts AM, Francois IEJA, Cammue BPA, et al. The mode of antifungal action of plant, insect and human defensins[J]. Cell Mol Life Sci, 2008, 65:2069-2079.
[22] Thevissen K, Ferket KKA, Francois IEJA, et al. Interactions of antifungal plant defensins with fungal membrane components[J]. Peptides, 2003, 24:1705-1712.
[23] Ramamoorthy V, Cahoon EB, Li J, et al. Glucosylceramide synthase is essential for alfalfa defensin mediated growth inhibition but not for pathogenicity of Fusarium graminearum[J]. Mol Microbiol, 2007, 66:771-786.
[24] De Paula V, Razzera G, Medeiros L, et al. Evolutionary relationship between defensins in the Poaceae family strengthened by the characterization of new sugarcane defensins[J]. Plant Mol Biol, 2008, 68:321-335.
[25] De Medeiros LN, Angeli R, Sarzedas CG, et al. Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy[J]. Biochim Biophys Acta, 2010, 1798:105-113.
[26] Thevissen K, de Mello TP, Xu D, et al. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans[J]. Mol Microbiol, 2012, 84(1):166-180.
[27] Thevissen K, Francois IEJA, Winderickx J, et al. Ceramide involvement in apoptosisand apoptotic diseases[J]. Mini Rev Med Chem, 2006, 6:699-709.
[28] De Coninck B, Cammue BPA, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides[J]. Fungal Biol Rev, 2013, 26:109-120.
[29] Aerts AM, Gutierrez DC, Lefevre S, et al. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans[J]. FEBS Letter, 2009, 583:2513-2516.
[30] Aerts AM, Bammens L, Govaert G, et al. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans[J]. Front Microbiol, 2011, 2:47.
[31] Park C, Lee DG. Melittin induces apoptotic features in Candida albicans[J]. Biochem Biophys Res Commun, 2010, 394(1):170-172.
[32] Park C, Woo ER, Lee DG. Antifungal effect with apoptotic mechanism(s)of Styraxjaponoside C[J]. Biochem Biophys Res Commun, 2009, 390(4):1255-1259.
[33] Madeo F, Frohlich E, Ligr M, et al. Oxygen stress:a regulator of apoptosis in yeast[J]. J Cell Biol, 1999, 145:757-767.
[34] De Brucker K, Cammue BP, Thevissen K. Apoptosis inducing antifungal peptides and proteins[J]. Biochem Soc Trans, 2011, 39:1527-1532.
[35] van der Weerden NL, Lay FT, Anderson MA. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae[J]. J Biol Chem, 2008, 283:14445-14452.
[36] Wilmes M, Cammue BP, Sahl HG, et al. Antibiotic activities of host defense peptides:more to it than lipid bilayer perturbation[J]. Nat Prod Rep 2011, 28:1350-1358.
[37] De Paula VS, Razzera G, Barreto BE, et al. Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR:multiple motions associated with membrane interaction[J]. Structure, 2011, 19:26-36.
[38] 付蓝宝, 于嘉林, 刘伟华. 防御素生物特性及其抗病基因工程[J]. 遗传, 2011, 33(5):512-519.
[39] 杨树维, 冯娟, 任正隆. 植物防御素的生物活性及其应用前景[J]. 生命科学仪器, 2010, 8(12):35-38.
[40] Abdallah NA, Shah D, Abbas D, et al. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt[J]. GM Crops, 2010, 1(5):344-350.
[41] Jha S, Chattoo BB. Expression of a plant defensin in rice confers resistance to fungal phytopathogens[J]. Transgenic Res, 2010, 19(3):373-384.
[42] Gao AG, Hakimi SM, Mittanck CA, et al. Fungal pathogen protection in potato by expression of a plant defensin peptide[J]. Nat Biotechnol. 2000, 18(12):1307-1310.
[43] 杨志才. 蒺藜苜蓿防御素基因MtDef4遗传转化甘蔗的研究[D]. 海口:海南大学, 2010.
[44] 朱立成. 中国紫藤种子抗真菌肽的研究[D]. 上海:中国科学院上海生命科学研究院, 2010.
[45] Shahzad Z, Ranwez V, Fizames C. Plant Defensin type 1(PDF1):protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri[J]. New Phytol, 2013. doi:10. 1111/nph. 12396.
[46] Carvalho AO, Gomes VM. Plant defensins:prospects for the biological functions and biotechnological properties[J]. Peptides, 2009(30):1007-1020. |