Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (3): 22-29.
• Papers • Previous Articles Next Articles
Han Guocan1, Jiang Shaojie2, Zou Feiyan2
Received:
2013-07-08
Online:
2014-03-29
Published:
2014-03-31
Han Guocan, Jiang Shaojie, Zou Feiyan. Casein Kinase 1α in Cell Signalling[J]. Biotechnology Bulletin, 2014, 0(3): 22-29.
[1] Rowles J, Slaughter C, Moomaw C, et al. Purification of casein kinase 1 and isolation of cDNAs encoding multiple casein kinase I-like enzymes[J]. Biochemistry, 1991, 88:9548-9552. [2] Bennett GS, Laskowska D, DiLullo C. Lithium inhibits the phospho-rylation of newly synthesized neurofilament protein, NF-M, in cultu-red chick sensory neurons[J]. J Neurochem, 1991, 57:120-129. [3] Knippschild U, Wolff S, Giamas G, et al. The role of the casein kin-ase 1(CK1)family in different signaling pathways linked to cancer development[J]. Onkologie, 2005, 28:508-514. [4] Knippschild U, Gocht A, Wolff S, et al. The casein kinase 1 family:participation in multiple cellular processes in eukaryotes[J]. Cellular Signalling, 2005, 17:675-689. [5] Dubois T, Howell S, Zemlickova E, et al. Identification of casein kinase 1α interacting protein partners[J]. FEBS Lett, 2002, 517:167-171. [6] Burzio V, Antonelli M, Allende CC, et al. Biochemical and cellular characteristics of the four splice variants of protein kinase CK1α from zebrafish(Danio rerio)[J]. J Cell Biochem, 2002, 86:805-814. [7] Green CL, Bennett GS. Identification of four alternatively spliced isoforms of chicken casein kinase 1 alpha that are all expressed in diverse cell types[J]. Gene, 1998, 216:189-195. [8] Zhang J, Gross SD, Schroeder MD, et al. Casein kinase 1α and αL:Alternative splicing-generated kinases exhibit different catalytic properties[J]. Biochemistry, 1996, 35:16319-16327. [9] Tapia C, Featherstone T, Gomez C, et al. Cloning and chromosomal localization of the gene coding for human protein kinase CK1[J]. FEBS Lett, 1994, 349:307-312. [10] Yong TJ, Gan YY, Toh BH, et al. Human CK1αL and CK1αS are econded by both 2. 4 and 4. 2 kb transcripts, the longer containing multiple RNA-destabilising elements[J]. Biochem Biophys Acta, 2000, 1492:425-433. [11] Fu Z, Chakraborti T, Morse S, et al. Four casein kinase 1 isoforms are differentially partitioned between nucleus and cytoplasm[J]. Exp Cell Res, 2001, 269:275-286. [12] Bedri S, Cizek SM, Rastarhuyeva I, et al. Regulation of protein kinase CK1αLS by dephosphorylation in response to hydrogen peroxide[J]. Arch Biochem Biophys, 2007, 466(2):242-249. [13] Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells[J]. Nature, 1999, 398:422-426. [14] van de Wetering M, Sancho E, Verweij C, et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells[J]. Cell, 2002, 111:241-250. [15] Gujral TS, MacBeath G. A system-wide investigation of the dynamics of wnt signaling reveals novel phases of transcriptional regulation[J]. PLoS ONE, 2010(4):e10024. [16] Mason MD, Davies G, Jiang WG. Cell adhesion molecules and adhe-sion abnormalities in prostate cancer[J]. Crit Rev Oncol Hema-tol, 2002, 41:11-28. [17] Lipschutz JH, Kissil JL. Expression of β-catenin and γ-catenin in epithelial tumor cell lines and characterization of a unique cell line[J]. Cancer Lett, 1998, 126:33-41. [18] Amit S, Hatzubai A, Birman Y, et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45:a molecular switch for the Wnt pathway[J]. Gene Dev, 2002, 16:1066-1076. [19] Liu C, Li Y, Semenov M, et al. Control of β-catenin phosphorylation/ degradation by a dual-kinase mechanism[J]. Cell, 2002, 108:837-847. [20] Davidson G, Wu W, Shen J, et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction[J]. Nature, 2005, 438:867-872. [21] Zeng X, Tamai K, Doble B, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation[J]. Nature, 2005, 438:873-877. [22] Behrens J, von Kries JP, Kühl, et al. Functional interaction of β-catenin with the transcription factor LEF-1[J]. Nature, 1996, 382:638-642. [23] Hecht A, Vleminckx K, Stemmler M. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates[J]. EMBO J, 2000, 19:1839-1850. [24] Kramps T, Peter O, Brunner E, et al. Wnt/wingless signaling requires BCL9/legless- mediated recruitment of pygopus to the nuclear β-catenin-TCF complex[J]. Cell, 2002, 109:47-60. [25] Hoffmans R, Stadeli R, Basler K. Pygopus and legless provide essential transcriptional coactivator functions to armadillo/β-catenin[J]. Curr Biol, 2005, 15:1207-1211. [26] Rohde F, Rimkus C, Friederichs J, et al. Expression of osteopontin, a target gene of de-regulated Wnt signaling, predicts survival in colon cancer[J]. Int J Cancer, 2007, 121(8):1717-1723. [27] Reya T, Clevers H. Wnt signaling in stem cells and cancer[J]. Nature, 2005, 34:843-850. [28] Mikami I, You L, He B, et al. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells[J]. BMC Cancer, 2005, 5(1):53-59. [29] You L, He B, Xu Z, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth[J]. Cancer Res, 2004, 64(15):5385-5389. [30] Nagayama S, Fukukawa C, Katagiri T, et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas[J]. Oncogene, 2005, 24(41):6201-6212. [31] Veeramachaneni NK, Kubokura H, Lin L, et al. Downregulation of beta catenin inhibits the growth of esophageal carcinoma cells[J]. J Thorac Cardiovasc Surg, 2004, 127(1):92-98. [32] Sinnberg T, Menzel M, Kaesler S, et al. Suppression of casein kinase 1alpha in melanoma cells induces a switch in beta-catenin signaling to promote metastasis[J]. Cancer Res, 2010, 70(17):6999-7009. [33] Legent K, Steinhauer J, Richard M, et al. A screen for X-linked mutations affecting Drosophila photoreceptor differentiation identifies Casein kinase 1α as an essential negative regulator of wingless signaling[J]. Genetics, 2012, 190(2):601-616. [34] Yanagawa S, Matsuda Y, Lee JS, et al. Casein kinase I phosphoryl-ates the Armadillo protein and induces its degradation in Drosophila[J]. EMBO J, 2002, 21:1733-1742. [35] Garcia-Rostan G, Tallini G, Herrero A, et al. Frequent mutation and nuclear localization of β-catenin in anaplastic thyroid carcinoma[J]. Cancer Res, 1999, 59:1811-1815. [36] Price MA. CKI, there's more than one:casein kinase I family members in Wnt and Hedgehog signaling[J]. Gene Dev, 2006, 20:399-410. [37] Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network[J]. Clin Cancer Res, 2007, 13(14):4042-4045. [38] Thorne CA, Hanson AJ, Schneider J, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α[J]. Nat Chem Biol, 2010, 6(11):829-836. [39] Barker N, Clevers H. Mining the Wnt pathway for cancer therapeu-tics[J]. Nat Rev Drug Discov, 2006, 5(12):997-1014. [40] Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer[J]. Nature, 2001, 411:349-354. [41] Ingham PW, McMahon AP. Hedgehog signaling in animal develo-pment:paradigms and principles[J]. Gene Dev, 2001, 15:3059-3087. [42] Varjosalo M, Taipale J. Hedgehog signaling[J]. Journal of Cell Science, 2007, 120:3-6. [43] Chamoun Z, Mann RK, Nellen D, et al. Skinny hedgehog, an acyltr-ansferase required for palmitoylation and activity of the hedgehog signal[J]. Science, 2001, 293:2080-2084. [44] Lee JD, Kraus P, Gaiano N, et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb develop-ment[J]. Dev Biol, 2001, 233:122-136. [45] Ruiz i Altaba A. Catching a Gli-mpse of Hedgehog[J]. Cell, 1997, 90:193-196. [46] Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer[J]. Nat Rev Drug Discov, 2006, 5(12):1026-1033. [47] Cohen MM Jr. The hedgehog signaling network[J]. Am J Med Genet A, 2003, 123(1):5-28. [48] Fuccillo M, Joyner AL, Fishell G. Morphogen to mitogen:the multiple roles of hedgehog signalling in vertebrate neural development[J]. Nat Rev Neurosci, 2006, 7(10):772-783. [49] Wang Y, McMahon AP, Allen BL. Shifting paradigms in Hedgehog signaling[J]. Curr Opin Cell Biol, 2007, 19:159-165. [50] Huangfu D. Anderson KV. Signaling from Smo to Ci/Gli:conservation and divergence of Hedgehog pathways from Drosophila to vertebrates[J]. Development, 2006, 133:3-14. [51] Kalderon D. Transducing the hedgehog signal[J]. Cell, 2000, 103:371-374. [52] Eaton S. Multiple roles for lipids in the Hedgehog signalling pathway[J]. Nat Rev Mol Cell Biol, 2008, 9(6):437-445. [53] Shahi MH, Lorente A, Castresana JS. Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma[J]. Oncol Rep, 2008, 19(3):681-618. [54] Lauth M, Toftg?rd R. Non-canonical activation of GLI transcription factors:implications for targeted anti-cancer therapy[J]. Cell Cycle, 2007, 6(20):2458-2463. [55] Yanai K, Naqai S, Wada J, et al. Hedgehog signaling pathway is a possible therapeutic target for gastric cancer[J]. J Surg Oncol, 2007, 95(1):55-62. [56] Aikin RA, Ayers KL, Thérond PP, et al. The role of kinases in the Hedgehog signalling pathway[J]. EMBO Reports, 2008, 9(4):330-334. [57] Oeckinghaus A, Wegener E, Welteke V, et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation[J]. EMBO J, 2007, 26(22):4634-4645. [58] Baldwin AS Jr. Series introduction:the transcripfion factor NF-κB and human disease[J]. J Clin Invest, 2001, 107(1):3-6. [59] Karin M, Cao Y, Greten FR, et al. NF-κB in cancer:from innocent bystander to major culprit[J]. Nat Rev Cancer, 2002, 2:301-310. [60] Lin X, Wang D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling[J]. Semin Immunol, 2004, 16:429-435. [61] Moynagh PN. The NF-κB pathway[J]. J Cell Sci, 2005, 118:4389-4392. [62] Bidère N, Ngo VN, Lee J, et al. Casein kinase 1a governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival[J]. Nature, 2009, 458(7234):92-97. [63] Wang Y, Sun X, Wu J, et al. Casein kinase 1alpha interacts with RIP1 and regulates NF-κB activation[J]. Biochemistry, 2008, 47(1):441-448. [64] Vousden KH. p53:death star[J]. Cell, 2000, 103:691-694. [65] Waning DL, Lehman JA, Batuello CN, et al. Controlling the Mdm2-Mdmx-p53 Circuit[J]. Pharmaceuticals(Basel), 2010, 3(5):1576-1593. [66] Gu JH, Kawai L, Nie H, et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53[J]. J Biol Chem, 2002, 277:19251-19254. [67] Wu S, Chen L, Becker A, et al. Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding[J]. Mol Cell Biol, 2012, 32(23):4821-4832. [68] Ramos YF, Stad R, Attema J, et al. Aberrant expression of MDMX proteins in tumor cells correlates with wild-type p53[J]. Cancer Res, 2002, 61:1839-1842. [69] Elyada E, Pribluda A, Goldstein RE, et al. CKIα ablation highlights a critical role for p53 in invasiveness control[J]. Nature, 2011, 470(7334):409-413. [70] Chen L, Li C, Pan Y, et al. Regulation of p53-MDMX interaction by casein kinase 1 alpha[J]. Mol Cell Biol, 2005, 25(15):6509-6520. [71] Wang L, Lu A, Zhou HX, et al. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development[J]. PLoS One, 2013, 8(5):e63173. [72] Quintavalle M, Sambucini S, Di Pietro C, et al. The α isoform of protein kinase CKI Is responsible for hepatitis C virus NS5A hype-rphosphorylation[J]. J Virol, 2006, 80(22):11305-11312. [73] Sudha G, Yamunadevi S, Tyagi N, et al. Structural and molecular basis of interaction of HCV non-structural protein 5A with human casein kinase 1α and PKR[J]. BMC Struct Biol, 2012, 1472(6807):12-28. [74] Zhang P, Bill K, Liu J, et al. MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling[J]. Cancer Res, 2012, 72(7):1751-1762. [75] Nyati S, Ranga R, Ross BD, et al. Molecular Imaging of GSK3β and CK1α kinases[J]. Anal Biochem, 2010, 405(2):246-254. |
[1] | Jiang Lihua, Fu Minghui, Li Yuanmei, Yan Guohua, Zheng Lijun, Cheng Xiaoli, Peng Jinping. Cloning and Analysis of Cytosolic Glutamine Synthetase cDNA from Eichharnia crassipes [J]. Biotechnology Bulletin, 2014, 0(7): 93-99. |
[2] | Wang Xiaowei,Zhang Ziping,Wang Yilei,Jia Xiwei,Lin Peng. Research Progress on Regulation Mechanism of Ovary Development in Shrimps and Crabs [J]. Biotechnology Bulletin, 2013, 0(7): 29-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||