Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (6): 22-28.
• Review and editorial • Previous Articles Next Articles
Cao Jing, Lan Haiyan
Received:
2013-11-22
Online:
2014-06-25
Published:
2014-06-25
Cao Jing, Lan Haiyan. Research Progress on Abscisic Acid Receptor and Signal Transduction Pathway[J]. Biotechnology Bulletin, 2014, 0(6): 22-28.
[1] Razem FA, El-Kereamy A, Abramset SR, et al. The RNA-binding protein FCA is an abscisic acid receptor[J] . Nature, 2006, 439(7074):290-294. [2] Risk JM, Macknight RC, Day CL. FCA does not bind abscisic acid[J] . Nature, 2008, 456(7223):E5-E6. [3] Zhang DP, Wu ZY, Li XY, et al. Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves[J] . Plant Physiol, 2002, 128:714-725. [4] Walker CJ, Willows RD. Mechanism and regulation of Mg-chelatase[J] . Biochem J, 1997, 327(2):321-333. [5] Mochizuki N, Brusslan JA, Larkin R, et al. Arabidopsis genomes uncoupled 5(GUN5)mutant reveals the involvement of Mg-chelat-ase H subunit in plastid-to-nucleus signal transduction[J] . Proc Nat Acad Sci USA, 2001, 98(4):2053-2058. [6] Shen YY, Wang XF, Wu FQ, et al. The Mg-chelatase H subunit is an abscisic acid receptor[J] . Nature, 2006, 443(7113):823-826. [7] Müller AH, Hansson M. The barley magnesium chelatase 150 kd subunit is not an abscisic acid receptor[J] . Plant Physiol, 2009, 150:157-166. [8] Wu FQ, Xin Q, Cao Z, et al. The Mg-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling:new evidence in Arabidopsis[J] . Plant Physiol, 2009, 150:1940-1954. [9] Legnaioli T, Cuevas J, Mas P. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought[J] . The EMBO Journal, 2009, 28(23):3745-3757. [10] Shang Y, Yan L, Liu ZQ, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J] . Plant Cell, 2010, 22:1909-1935. [11] 张大鹏. 始于质体/叶绿体的ABA信号通路[J] . 植物学报, 2011, 46(4):361-369. [12] Liu ZQ, Yan L, Wu Z, et al. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis[J] . J Exp Bot, 2012, 63(18):6371-6392. [13] Chen H, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J] . BMC Plant Biology, 2010, 10(1):281. [14] Tsuzuki T, Takahashi K, et al. Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana[J] . J Plant Res, 2011, 124:527-538. [15] Temple BRS, Jones AM. The plant heterotrimeric G-protein complex[J] . Annu Rev Plant Biol, 2007, 58:249-266. [16] Liu XG, Yue YL, Li B, et al. A G protein-coupled receptor is a pla-sma membrane receptor for the plant hormone abscisic acid[J] . Science, 2007a, 315(5819):1712-1716. [17] Gao Y, Zeng Q, Guo J, et al. Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis[J] . The Plant Journal, 2007, 52(6):1001-1013. [18] Liu XG, Yue YL, et al. Response to comment on “A G protein-coup- led receptor is a plasma membrane receptor for the plant hormone abscisic acid”[J] . Science, 2007b, 318:914-914. [19] Risk JM, Day CL, Macknight RC, et al. Reevaluation of abscisic acid-binding assays shows that G-protein-coupled receptor2 does not bind abscisic acid[J] . Plant Physiol, 2009, 150:6-11. [20] Guo J, Zeng Q, et al. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis[J] . PLoS One, 2008, 3(8):e2982. [21] Johnston CA, Temple BR, et al. Comment on “A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”[J] . Science, 2007, 318(582):914. [22] Chen JG, Ellis BE. GCR2 is a new member of the eukaryotic lanthionine synthetase component C-like protein family[J] . Plant Signaling & Behavior, 2008, 3(5):307-310. [23] Illingworth CJ, Parkes KE, Snell CR, et al. Criteria for confirming sequence periodicity identified by Fourier transform analysis:Application to GCR2, a candidate plant GPCR?[J] . Biophysical Chemistry, 2008, 33(1):28-35. [24] Assmann SM. Plant G proteins, phytohormones, and plasticity:three questions and a speculation[J] . Sci STKE, 2004, 264:re20. [25] Jones AM, Assmann SM. Plants:the latest model system for G-protein research[J] . EMBO Rep, 2004, 5:572-578. [26] Pandey S, Assmann SM. The Arabidopsis putative G proteincoupled receptor GCR1 interacts with the G protein a subunit GPA1 and regulates abscisic acid signaling[J] . Plant Cell, 2004, 16:1616-1632. [27] Pandey S, Chen JG, et al. G-protein complex mutants are hypersen- sitive to abscisic acid regulation of germination and postgermination development[J] . Plant Physiol, 2006, 141:243-256. [28] Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals:keys to the function of the versatile plant hormone ABA[J] . Trends Plant Sci, 2007, 12:343-350. [29] Pandey S, Nelson DC, Assmann SM. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis[J] . Cell, 2009, 136:136-148. [30] Guo JJ, Yang XH, David J, et al. Abscisic acid receptors:Past, Present and Future[J] . Journal of Integrative Plant Biology, 2011, 53(6):469-479. [31] Pennisi E. Plant biology. Stressed out over a stress hormone[J] . Science, 2009, 324:1012-1013. [32] Christmann A, Grill E. Are GTGs ABA’s biggest fans?[J] . Cell, 2009, 136(1):21. [33] Risk JM, Day CL, Macknight RC. Reevaluation of abscisic acid-binding assays shows that G-protein-coupled receptor2 does not bind abscisic acid[J] . Plant Physiology, 2009, 150(1):6-11. [34] Jones AM, Sussman MR. A binding resolution[J] . Plant Physiology, 2009, 150(1):3-5. [35] Mc Court P. Genetic analysis of hormone signaling[J] . Annu Rev Plant Physiol Plant Mol Biol, 1999, 50:219. [36] Zhao Y, Chow TF, Puckrin RS, et al. Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated[J] . Nat Chem Biol, 2007, 3:716-721. [37] Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J] . Science, 2009, 324(5930):1068-1071. [38] Nishimura N, Sarkeshik A, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J] . Plant J, 2010, 61:290-299. [39] Rodriguez PL. Protein phosphatase 2C(PP2C)function in higher plants[J] . Plant Molecular Biology, 1998, 38(6):919-927. [40] Fujii H, Chinnusamy V, et al. In vitro reconstitution of an abscisic acid signaling pathway[J] . Nature, 2009, 462:660-664. [41] Ma Y, Szostkiewicz I, Kortz A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J] . Science Signalling, 2009, 324(5930):1064-1068. [42] Santiago J, Dupeux F, et al. The abscisic acid receptor PYR1 in complex with abscisic acid[J] . Nature, 2009, 462:665-668. [43] Nishimura N, Hitomi K, Arvai AS, et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1[J] . Science, 2009, 326:1373-1379. [44] Melcher K, Ng LM, Zhou XE, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptor[J] . Nature, 2009, 462:602-608. [45] Miyazono K, Miyakawa T, Sawano Y, et al. Structural basis of abscisic acid signaling[J] . Nature, 2009, 462:609-614. [46] Yin P, Fan H, Hao Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins[J] . Nat Struct Mol Biol, 2009, 16:1230-1236. [47] Yuan XQ, Yin P, Hao Q, et al. Single amino acid alteration between valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2[J] . J Biol Chem, 2010, 285:28953-28958. [48] Hao Q, Yin P, Li WQ, et al. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins[J] . Mol Cell, 2011, 42:662-672. [49] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J] . Annu Rev Plant Biol, 2005, 56:165-185. [50] Umezawa T, Nakashima K, Miyakawa T, et al. Molecular basis of the core regulatory network in ABA responses:sensing, signaling and transport[J] . Plant Cell Physiol, 2010, 51:1821-1839. [51] Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings[J] . Plant Cell, 2002, 14:S15-S45. [52] Cutler SR, et al. Abscisic acid:emergence of a core signaling network[J] . Annu Rev Plant Biol, 2010, 61:651-679. [53] Fedoroff NV. Cross-talk in abscisic acid signaling[J] . Sci STKE, 2002, 140:re10. [54] Raghavendra AS, Gonugunta VK, et al. ABA perception and signaling[J] . Trends Plant Sci, 2010, 15:395-401. [55] Wang YH, Irving HR.Developing a model of plant hormone interactions[J] .Plant Signal Behav, 2011, 6:494-500. |
[1] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[2] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[3] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[4] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[5] | LI Wen-jiao, ZHANG Zhong-feng, LIU Qing, SUN Jie, YANG Li, WANG Xing-jun, ZHAO Shu-zhen. Role of BRs in Plant Response to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(1): 228-235. |
[6] | WU Feng-zhang, WANG He-xin. Low Temperature Stress Response Mediated by Protein Ubiquitination in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 225-235. |
[7] | WANG Lu-lu, GENG Xing-min, XU Shi-da. Ethylene Receptor in Fruit Ripening and Flower Senescence [J]. Biotechnology Bulletin, 2021, 37(3): 144-152. |
[8] | HU Xiao-qian, ZHANG Ying-yi, LI Xin, YAN Hai-fang. Research Progress of Remorin Protein in Plants [J]. Biotechnology Bulletin, 2020, 36(8): 136-143. |
[9] | YANG Rui-jia, ZHANG Zhong-bao, WU Zhong-yi. Progress of the Structural and Functional Analysis of Plant Transcription Factor TIFY Protein Family [J]. Biotechnology Bulletin, 2020, 36(12): 121-128. |
[10] | YU Ming-xiang, SONG Shui-shan. Biological Functions of Protein Fatty Acylation in Plant Cells [J]. Biotechnology Bulletin, 2019, 35(8): 170-177. |
[11] | LIU Chang-yu, CHEN Xun, LONG Yu-qing, CHEN Ya, LIU Xiang-dan, ZHOU Ri-bao. Research Advances in Genes Involved in Ethylene Biosynthesis and Signal Transduction During Flower Senescence [J]. Biotechnology Bulletin, 2019, 35(3): 171-182. |
[12] | ZHANG Qi, CHEN Jing, LI Li, ZHAO Ming-zhu, ZHANG Mei-ping, WANG Yi. Research Progress on Plant AP2/ERF Transcription Factor Family [J]. Biotechnology Bulletin, 2018, 34(8): 1-7. |
[13] | FENG Han-qian, LI Chao. Research Advances of Auxin Signal Transduction [J]. Biotechnology Bulletin, 2018, 34(7): 24-30. |
[14] | DOU Yue, LIU Mei-tong, LU An-na, WU Jia-jie, WANG Qun-qing, XU Qian. Regulatory Mechanism of Mediator Subunit MED25 on Multi-phytohormone Signaling Pathways [J]. Biotechnology Bulletin, 2018, 34(7): 40-47. |
[15] | CUI Hong-li, CHEN Jun, HOU Yi-long, WU Hai-ge, QIN Song. Research Progress on Blue-photoreceptors and Its Functions in Eukaryotic Microalgae [J]. Biotechnology Bulletin, 2017, 33(4): 51-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||