Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (7): 1-7.
• Review and editorial • Next Articles
Liu Lijuan1, Liu Ailing1, 2, Chen Xinbo1, 2
Received:
2013-11-28
Online:
2014-07-15
Published:
2014-07-16
Liu Lijuan, Liu Ailing, Chen Xinbo. Abiotic Stress-related RING Finger Proteins in Plant[J]. Biotechnology Bulletin, 2014, 0(7): 1-7.
[1] Berg JM, Shi Y. The galvanization of biology:a growing appreciation for the roles of zinc[J]. Science, 1996, 271(5252):1081-1085.
[2] Takatsuji H. Zinc-finger transcription factors in plants[J]. Cell Mol Life Sci, 1998, 54(6):582-596. [3] Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation[J]. Eur J Biochem, 1999, 262(2):247-257. [4] Singh K, Foley RC, O?ate-Sánchez L. Transcription factors in plant defense and stress responses[J]. Curr Opin Plant Biol, 2002, 5(5):430-436. [5] 杨致荣, 王兴春, 李西明, 杨长登. 高等植物转录因子的研究进展[J]. 遗传, 2004, 26(3):403-408. [6] 向建华, 李灵之, 陈信波. 植物非生物逆境相关锌指蛋白基因的研究进展[J]. 核农学报, 2012, 26(4):666-672. [7] Kozaki A, Hake S, Colasanti J. The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties[J]. Nucleic Acids Res, 2004, 32(5):1710-1720. [8] Wu C, You C, Li C, et al. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice[J]. Proc Natl Acad Sci USA, 2008, 105(35):12915-12920. [9] Zeba N, Isbat M, Kwon NJ, et al. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco[J]. Planta, 2009, 229(4):861-871. [10] Kam J, Gresshoff P, Shorter R, Xue GP. Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root[J]. Plant Sci, 2007, 173(6):650-659. [11] 郭丽香, 高世庆, 唐益苗, 等. 小麦TaCRF2 基因的克隆及其在烟草中的初步功能验证[J].作物学报, 2011, 37(8):1389-1397. [12] Stone SL, Hauksdóttir H, Troy A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiol, 2005, 137(1):13-30. [13] Lim SD, Yim WC, Moon JC, et al. A gene family encoding RING finger proteins in rice:their expansion, expression diversity, and co-expressed genes[J]. Plant Mol Biol, 2010, 72(4-5):369-380. [14] Li Y, Wu B, Yu Y, et al. Genome-wide analysis of the RING finger gene family in apple[J]. Mol Genet Genomics, 2011, 286(1):81-94. [15] Cheng MC, Hsieh EJ, Chen JH, et al. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response[J]. Plant Physiol, 2012, 158(1):363-375. [16] Liu K, Wang L, Xu Y, et al. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]. Planta, 2007, 226(4):1007-1016. [17] Lee HK, Cho SK, Son O, et al. Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants[J]. Plant Cell, 2009, 21(2):622-641. [18] Xia Z, Liu Q, Wu J, Ding J. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize[J]. Gene, 2012, 495(2):146-153. [19] Lim SD, Cho HY, Park YC, et al. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance[J]. J Exp Bot, 2013, 64(10):2899-2914. [20] Satijn DP, Gunster MJ, van der Vlag J, et al. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor[J]. Mol Cell Biol, 1997, 17(7):4105-4113. [21] Yang X, Sun C, Hu Y, Lin Z. Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum[J]. J Biosci, 2008, 33(1):103-112. [22] Ma K, Xiao J, Li X, et al. Sequence and expression analysis of the C3HC4-type RING finger gene family in rice[J]. Gene, 2009, 444(1-2):33-45. [23] Mukoko Bopopi J, Vandeputte OM, Himanen K, et al. Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses[J]. J Exp Bot, 2010, 61(1):297-310. [24] Park GG, Park JJ, Yoon J, et al. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1(OsDSG1), controls seed germination and stress responses in rice[J]. Plant Mol Biol, 2010, 74(4-5):467-478. [25] Lai J, Chen H, Teng K, et al. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle[J]. Plant J, 2009, 57(5):905-917. [26] 宋素胜, 谢道昕. 泛素蛋白酶体途径及其对植物生长发育的调控[J]. 植物学通报, 2006, 23(5):564-577. [27] Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants[J]. Ann Bot, 2007, 99(5):787-822. [28] Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling[J]. Plant J, 2010, 61(6):1029-1040. [29] Henriques R, Jang IC, Chua NH. Regulated proteolysis in light-related signaling pathways[J]. Curr Opin Plant Biol, 2009, 12(1):49-56. [30] Kuras L, Rouillon A, Lee T, et al. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment[J]. Mol Cell, 2002, 10(1):69-80. [31] Lu CS, Truong LN, Aslanian A, et al. The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination[J]. J Biol Chem, 2012, 287(52):43984-43994. [32] Lin SS, Martin R, Mongrand S, et al. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis[J]. Plant J, 2008, 56(4):550-561. [33] Zhang Y, Feng S, Chen F, et al. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes[J]. Plant Cell, 2008, 20(6):1437-1455. [34] Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL. Ubiquitination-mediated protein degradation and modification:an emerging theme in plant-microbe interactions[J]. Cell Res, 2006, 16(5):413-426. [35] Trujillo M, Shirasu K. Ubiquitination in plant immunity[J]. Curr Opin Plant Biol, 2010, 13(4):402-408. [36] Xia Z, Su X, Liu J, Wang M. The RING-H2 finger gene 1(RHF1)encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum[J]. Genetica, 2013, 141(1-3):11-21. [37] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007, 58(2):221-227. [38] Ahuja I, de Vos RC, Bones AM, Hall RD. Plant molecular stress responses face climate change[J]. Trends Plant Sci, 2010, 15(12):664-674. [39] Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis[J]. Plant J, 2006, 47(3):343-355. [40] Ryu MY, Cho SK, Kim WT. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress[J]. Plant Physiol, 2010, 154(4):1983-1997 [41] Cho SK, Ryu MY, Seo DH, et al. The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses[J]. Plant Physiol, 2011, 157(4):2240-2257. [42] Bu Q, Li H, Zhao Q, et al. The Arabidopsis RING finger E3 ligase RHA2a Is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development[J]. Plant Physiol, 2009, 150(1):463-481. [43] Li H, Jiang H, Bu Q, et al. The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response[J]. Plant Physiol, 2011, 156(2):550-563. [44] Zhang Y, Yang C, Li Y, et al. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis[J]. Plant Cell, 2007, 19(6):1912-1929. [45] Gao T, Wu Y, Zhang Y, et al. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice[J]. Plant Mol Biol, 2011, 76(1-2):145-156. [46] Bae H, Kim SK, Cho SK, et al. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice(Oryza sativa L.)[J]. Plant Sci, 2011, 180(6):775-782. [47] Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants:An overview[J]. Environmental and Experimental Botany, 2007, 61(3):199-223. [48] Kampinga HH, Brunsting JF, Stege GJ, et al. Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals:role of heat shock proteins[J]. Exp Cell Res, 1995, 219(2):536-546. [49] Alfonso M, Yruela I, Almárcegui S, et al. Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max(L.)Merr. cell cultures deficient in fatty acid desaturation[J]. Planta, 2001, 212(4):573-582. [50] Larkindale J, Huang B. Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. J Plant Physiol, 2004, 161(4):405-413. [51] Larkindale J, Hall JD, Knight MR, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance[J]. Plant Physiol, 2005, 138(2):882-897. [52] Dong CH, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc Natl Acad Sci USA, 2006, 103(21):8281-2886. [53] Sahi C, Singh A, Blumwald, Grover A. Beyond osmolytes and transporters:novel plant salt-stress tolerance-related genes from transcriptional profiling data[J]. Physiologia Planta, 2006, 127(1):1-9. [54] Dos Reis SP, Tavares Lde S, Costa Cde N, et al. Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava[J]. Mol Biol Rep, 2012, 39(6):6513-6519. [55] Du QL, Cui WZ, Zhang CH, Yu DY. GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean(Glycine max)[J]. Mol Biol Rep, 2010, 37(2):685-693. [56] Kang M, Fokar M, Abdelmageed H, Allen RD. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity[J]. Plant Mol Biol, 2011, 75(4-5):451-466. [57] Jung YJ, Lee IH, Nou IS, et al. BrRZFP1 a Brassica rapa C3HC4-type RING zinc finger protein involved in cold, salt and dehydration stress[J]. Plant Biol(Stuttg), 2013, 15(2):274-283. [58] Xie Q, Guo HS, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903):167-170. |
[1] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[2] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[5] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[6] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[7] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[8] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[9] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[10] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[11] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
[12] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
[13] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[14] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[15] | WANG Hui, MA Yi-wen, QIAO Zheng-hao, CHANG Yan-cai, ZHU Kun, DING Hai-ping, NIE Yong-xin, PAN Guang-tang. Structural and Functional Characterization of AOX Gene Family [J]. Biotechnology Bulletin, 2022, 38(7): 160-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||