[1] Ward LD,Kellis M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions[J]. Science, 2012, 337(6102):1675-1678. [2] Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA[J]. Science, 2012, 337(6099):1190-1195. [3] Gardner KE, Allis CD, Strahl BD. Operating on chromatin, a colorful language where context matters[J]. J Mol Biol, 2011, 409(1):36-46. [4] Straussman R, Nejman D, Roberts D, et al. Developmental programming of CpG island methylation profiles in the human genome[J]. Nature Structural & Molecular Biology, 2009, 16(5):564-571. [5] Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells[J]. Nature, 2007, 448(7153):553-560. [6] Guenther MG, Levine SS, Boyer LA, et al. A chromatin landmark and transcription initiation at most promoters in human cells[J]. Cell, 2007, 130(1):77-88. [7] Consortium EP, Bernstein BE, Birney E, et al. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414):57-74. [8] Goldberg AD, Banaszynski LA, Noh KM, et al. Distinct factors control histone variant H3. 3 localization at specific genomic regions[J]. Cell, 2010, 140(5):678-691. [9] Bannister AJ,Kouzarides T. Regulation of chromatin by histone modifications[J]. Cell Res, 2011, 21(3):381-395. [10] Ernst J,Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome[J]. Nat Biotechnol, 2010, 28(8):817-825. [11] Sauvageau M,Sauvageau G. Polycomb group proteins:multi-faceted regulators of somatic stem cells and cancer[J]. Cell Stem Cell, 2010, 7(3):299-313. [12] Christophersen NS,Helin K. Epigenetic control of embryonic stem cell fate[J]. Journal of Experimental Medicine, 2010, 207(11):2287-2295. [13] Hawkins RD, Hon GC, Lee LK, et al. Distinct epigenomic landsca-pes of pluripotent and lineage-committed human cells[J]. Cell Stem Cell, 2010, 6(5):479-491. [14] Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of his-tone methylations in the human genome[J]. Cell, 2007, 129(4):823-837. [15] Yun M, Wu J, Workman JL, et al. Readers of histone modifications [J]. Cell Res, 2011, 21(4):564-578. [16] Ohlsson R, Bartkuhn M,Renkawitz R. CTCF shapes chromatin by multiple mechanisms:the impact of 20 years of CTCF research on understanding the workings of chromatin[J]. Chromosoma, 2010, 119(4):351,360. [17] Cuddapah S, Jothi R, Schones DE, et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains[J]. Genome Res, 2009, 19(1):24-32. [18] Bedford DC, Kasper LH, Fukuyama T, et al. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases[J]. Epigenetics, 2010, 5(1):9-15. [19] Heintzman ND, Stuart RK, Hon G, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome[J]. Nat Genet, 2007, 39(3):311-318. [20] Visel A, Blow MJ, Li Z, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers[J]. Nature, 2009, 457(7231):854-858. [21] Blow MJ, McCulley DJ, Li Z, et al. ChIP-Seq identification of weakly conserved heart enhancers[J]. Nat Genet, 2010, 42(9):806-810. [22] Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression[J]. Nature, 2009, 459(7243):108-112. [23] Patel DJ,Wang Z. Readout of epigenetic modifications[J]. Annu Rev Biochem, 2013, 82:81-118. [24] Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state[J]. Proceedings of the National Academy of Sciences, 2010, 107(50):21931-21936. [25] Rada-Iglesias A, Bajpai R, Swigut T, et al. A unique chromatin signature uncovers early developmental enhancers in humans[J]. Nature, 2011, 470(7333):279-283. [26] Zentner GE, Tesar PJ,Scacheri PC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions[J]. Genome Res, 2011, 21(8):1273-1283. [27] Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types[J]. Nature, 2011, 473(7345):43-49. [28] Nei M, Suzuki Y,Nozawa M. The neutral theory of molecular evolution in the genomic era[J]. Annual Review of Genomics and Human Genetics, 2010, 11:265-289. [29] Nelson AC,Wardle FC. Conserved non-coding elements and cis regulation:actions speak louder than words[J]. Development, 2013, 140(7):1385-1395. [30] Kague E, Bessling SL, Lee J, et al. Functionally conserved cis-regulatory elements of COL18A1 identified through zebrafish transgenesis[J]. Dev Biol, 2010, 337(2):496-505. [31] Langlais D, Couture C, Sylvain-Drolet G, et al. A pituitary-specific enhancer of the POMC gene with preferential activity in corticotrope cells[J]. Mol Endocrinol, 2011, 25(2):348-359. [32] Doglio L, Goode DK, Pelleri MC, et al. Parallel evolution of chordate cis-regulatory code for development[J]. PLoS Genet, 2013, 9(11):e1003904. [33] Kim MJ, Skewes-Cox P, Fukushima H, et al. Functional characterization of liver enhancers that regulate drug-associated transporters[J]. Clinical Pharmacology & Therapeutics, 2011, 89(4):571-578. [34] Antonellis A, Huynh JL, Lee-Lin SQ, et al. Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish[J]. PLoS Genet, 2008, 4(9):e1000174. [35] McGaughey DM, Vinton RM, Huynh J, et al. Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b[J]. Genome Res, 2008, 18(2):252-260. [36] Consortium EP, Birney E, Stamatoyannopoulos JA, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project[J]. Nature, 2007, 447(7146):799-816. [37] Ahituv N, Zhu Y, Visel A, et al. Deletion of ultraconserved elements yields viable mice[J]. PLoS Biol, 2007, 5(9):e234. [38] Boyle AP, Song L, Lee BK, et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells[J]. Genome Res, 2011, 21(3):456-464. [39] Kim YW,Kim A. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation[J]. Biochim Biophys Acta, 2013, 1829(9):963-969. [40] Madrigal P,Krajewski P. Current bioinformatic approaches to identify DNase I hypersensitive sites and genomic footprints from DNase-seq data[J]. Frontiers in Genetics, 2012(3):230. [41] Simon JM, Giresi PG, Davis IJ, et al. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA[J]. Nat Protoc, 2012, 7(2):256-267. [42] Ren B, Robert F, Wyrick JJ, et al. Genome-wide location and function of DNA binding proteins[J]. Science, 2000, 290(5500):2306-2309. [43] Cooper SJ, Trinklein ND, Anton ED, et al. Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome[J]. Genome Res, 2006, 16(1):1-10. [44] Fort A, Fish RJ, Attanasio C, et al. A liver enhancer in the fibrinogen gene cluster[J]. Blood, 2011, 117(1):276-282. [45] Groth AC,Emery DW. A functional screen for regulatory elements that improve retroviral vector gene expression[J]. Blood Cells Mol Dis, 2010, 45(4):343-350. [46] Chatterjee S, Bourque G,Lufkin T. Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes[J]. BMC Dev Biol, 2011, 11:63. [47] Narlikar L, Sakabe NJ, Blanski AA, et al. Genome-wide discovery of human heart enhancers[J]. Genome Res, 2010, 20(3):381-392. [48] Visel A, Zhu Y, May D, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature, 2010, 464(7287):409-412. [49] Pennacchio LA, Ahituv N, Moses AM, et al. In vivo enhancer analysis of human conserved non-coding sequences[J]. Nature, 2006, 444(7118):499-502. |