Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (10): 56-63.
Previous Articles Next Articles
Zhang Qiang1, Liu Bin2, Liu Wei1, Ren Jin1, Xu Sheng1, Zhang Bin1
Received:
2014-02-20
Online:
2014-10-20
Published:
2014-10-17
Zhang Qiang, Liu Bin, Liu Wei, Ren Jin, Xu Sheng, Zhang Bin. The Biological Remediation Technology for the Contaminated Soil[J]. Biotechnology Bulletin, 2014, 0(10): 56-63.
[1] Langdon CJ, Piearce TG, Meharg AA, et al. Interactions between earthworms and arsenic in the soil environment:a review[J]. Environmental Pollution, 2003, 124(3):361-373. [2] 戈峰, 刘向辉, 潘卫东, 等. 蚯蚓在德兴铜矿废弃地生态恢复中的作用[J].生态学报, 2001, 21(11):1790-1795. [3] 戈峰, 刘向辉, 江炳缜. 蚯蚓对金属元素的富集作用分析[J]. 农业环境保护, 2002, 21(1):16-18. [4] Singer AC, Jury W, Luepromchaia E, et al. Contribution of earth-worms to PCB bioremediation[J]. Soil Biology and Biochemistry, 2001, 33(6):765-776. [5] 王一华, 傅荣恕. 辛硫磷农药对土壤螨类影响的研究[J]. 山东师范大学学报:自然科学版, 2003, 4:72-75. [6] 张薇, 宋玉芳, 孙铁珩, 等. 土壤线虫对环境污染的指示作用[J]. 应用生态学报, 2004, 10:1973-1978. [7] Banuelos G, Cardon G, Mackey B, et al. Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species[J]. Journal of Environmental Quality, 1993, 22:786-792. [8] Banuelos G, Ajwa H, Mackey B, et al. Evaluation of different plant species used for phytoremediation of high soil selenium[J]. Journal of Environmental Quality, 1997, 26:639-646. [9] Meagher R. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology, 2000, 3:153-162. [10] 屈冉, 孟伟, 李俊生, 等. 土壤重金属污染的植物修复[J]. 生态学杂志, 2008, 27(4):626-631. [11] 张志权, 蓝崇钰. 铅锌矿尾矿场植被重建的生态学研究I.尾矿对种子萌发的影响[J]. 应用生态学报, 1994, 5(1):52-56. [12] 孔牧, 任天祥. 黑龙江小西林铅锌矿植物内铅锌积累机制初步研究[J]. 有色金属矿产与勘查, 1996, 5(1):54-57. [13] Tang S, Huang C, Zhu Z. Commelina communis L.:copper hyper-aecumulator found in Anhui province of China[J]. Pedosphere, 1997, 7(3):207-210. [14] Leendease PC, Pak GA. Green soil clean-up by farmers:a challenge Contaminated Soil’ 98[M]. London:Thomas, 1998:1107-1108. [15] 张志权, 束文圣, 蓝崇钰, 等. 土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配[J]. 植物生态学报, 2001, 25(3):306-311. [16] 杨肖娥, 龙新宪, 倪吾钟, 等. 东南景天(Sedum alfredii H)一种新的锌超积累植物[J]. 科学通报, 2002, 47(13):1003-1006. [17] Chen TB, Wei CY, Huang ZC, et al. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 2002, 47(11):902-905. [18] 韦朝阳, 陈同斌, 黄泽春, 等. 大叶井口边草——一种新发现的富集砷的植物[J]. 生态学报, 2002, 22(5):777-778. [19] 叶春和. 紫花苜蓿对铅污染土壤修复能力及其机理的研究[J]. 土壤与环境, 2002, 11(4):331-334. [20] 郭水良, 黄朝表, 边媛, 等. 金华市郊杂草对土壤重金属元素的吸收与富集作用(Ⅰ)-6种重金属元素在杂草和土壤中的含量分析[J]. 上海交通大学学报:农业科学版, 2002, 20(1):22-30. [21] Schwartz C, Echevarria G, More JL. Phytoextraction of cadmium with Thlaspi caerulescens[J]. Plant and Soil, 2003, 249:27-35. [22] 汤叶涛, 仇荣亮, 曾晓雯, 等 . 一种新的多金属超富集植物——圆锥南芥(Arabis Paniculata L.)[J]. 中山大学学报, 2005(4):135-136. [23] Bert V, Meerts P, Saumitou-Laprade P, et al. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri[J]. Plant and Soil, 2003, 249:9-18. [24] Citterio S, Santagostino A, Fumagalli P. Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L.[J]. Plant and Soil, 2003, 256(2):243-252. [25] Kos B, Lestan D. Soil washing of Pb, Zn and Cd using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa[J]. Plant and Soil, 2004, 263(1):43-51. [26] Qadir S, Qureshi MI, Javed S, et al. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress[J]. Plant Science, 2004, 167:1171-1181. [27] 魏树和, 周启星, 王新, 等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L.)[J]. 科学通报, 2004, 49(24):2568-2573. [28] 吴双桃, 吴晓芙, 胡曰利, 等. 铅锌冶炼厂土壤污染及重金属富集植物的研究[J]. 生态环境, 2004(2):156-157, 160. [29] 何新华, 陈力耕, 何冰, 等. 铅对杨梅幼苗生长的影响[J].果树学报, 2004, 21(1):29-32. [30] 聂俊华, 刘秀梅, 王庆仁. Pb(铅)富集植物品种的筛选[J]. 农业工程学报, 2004(4):255-258. [31] 陆晓怡, 何池全. 蓖麻对重金属Cd的耐性与吸收积累研究[J]. 农业环境科学学报, 2005, 24(41):674-677. [32] 刘成志, 尚鹤, 姚斌, 等. 柴河铅锌尾矿耐性植物与优势植物的重金属含量研究[J]. 林业科学研究, 2005, 18(3):246-249. [33] Arduini I, Ercoli L, Mariotti M, et al. Response of miscanthus to toxic cadmium applications during the period of maximum growth[J]. Environmental and Experimental Botany, 2006, 55(1):29-40. [34] 聂发辉. 镉超富集植物商陆及其富集效应[J]. 生态环境, 2006, 15(2):303-306. [35] 吴龙华, 周守标, 毕德, 等. 中国景天科植物一新种——伴矿景天[J]. 土壤, 2006, 38(5):632-633. [36] 祝鹏飞, 宁平, 曾向东, 等. 矿区土壤Pb的分布特征及植物修复应用性研究[J]. 工业安全与环保, 2006, 32(5):4-6. [37] Solís-Domínguez FA, González-Chávez MC, Carrillo-González R, et al. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system[J]. Journal of Hazardous Materials, 2007, 141:630-636. [38] 邓培雁, 刘威, 韩博平. 宝山堇菜(Viola baoshanensis)镉胁迫下的光合作用[J]. 生态学报, 2007, 27(5):1858-1862. [39] 胡宗达, 杨远祥, 朱雪梅, 等. Pb, Zn对超富集植物(小鳞苔草)抗氧化酶活性的影响[J]. 水土保持学报, 2007(6):86-91. [40] 陈一萍. 重金属超积累植物的研究进展[J]. 环境科学与管理, 2008, 33(3):20-24. [41] 肖青青, 王宏镔, 王海娟, 等. 滇白前(Silene viscidula)对铅、锌、镉的共超富集特征[J]. 生态环境学报, 2009(4):1299-1306. [42] 刘月莉, 伍钧, 唐亚, 等. 四川甘洛铅锌矿区优势植物的重金属含量[J]. 生态学报, 2009(4):2020-2026. [43] Zhang X, Xia H, Li Z, et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6):2063-2066. [44] 罗于洋, 赵磊, 王树森. 铅超富集植物密毛白莲蒿对铅的富集特性研究[J]. 西北林学院学报, 2010, 5:37-40. [45] 叶林春, 张青松, 蒋小军, 等. 矿区植物假繁缕对铅、锌积累特性的研究[J]. 中国环境科学, 2010, 30(2):239-245. [46] 秦建桥, 夏北成, 赵鹏, 等. 五节芒(Miscanthus floridulus)不同种群对镉积累与转运的差异研究[J]. 农业环境科学学报, 2011, 30(1):21-28. [47] 陈三雄, 陈家栋, 谢莉, 等. 广东大宝山矿区植物对重金属的富集特征[J]. 水土保持学报, 2011, 25(6):216-220. [48] 邓小鹏, 彭克俭, 陈亚华, 等. 4种茄科植物对矿区污染土壤重金属的吸收和富集[J]. 环境污染与防治, 2011, 33(1):46-51. [49] 况武, 田伟莉, 高全喜. 白三叶在铜、镉、铅复合污染土壤修复上的应用[J]. 能源工程, 2012, 6:53-56. [50] 欧阳林男, 吴晓芙, 郭丹丹, 等. 锰污染土壤修复的植物筛选与改良效应[J]. 中南林业科技大学学报, 2012, 32(12):7-11. [51] 韩少华, 黄沈发, 唐浩, 等. 3种植物对Cd污染农田土壤的修复效果比较试验研究[J]. 环境污染与防治, 2012, 34(12):22-25, 30. [52] 杨期和, 何彦君, 李姣清, 等. 煤矸石废弃地中胜红蓟的重金属富集研究[J]. 生态环境学报, 2012, 21(10):1749-1755. [53] 曹福亮, 郁万文, 朱宇林. 银杏幼苗修复Pb和Cd重金属污染土壤特性[J]. 林业科学, 2012, 48(4):8-13. [54] 胡方洁, 张健, 杨万勤, 等. Pb胁迫对红椿(Toona ciliate Roem)生长发育Pb富集特性的影响[J]. 农业环境科学学报, 2012, 31(2):284-291. [55] 李清飞. 麻疯树对铅胁迫的生理耐性研究[J]. 生态与农村环境学报, 2012, 28(1):72-76. [56] 李庚飞. 4种植物对3种重金属的吸收研究[J]. 吉林农业科学, 2013, 38(3):86-88. [57] 刘柿良, 石新生, 潘远智. 镉胁迫对长春花生长, 生物量及养分积累与分配的影响[J]. 草业学报, 2013, 22(3):154-161. [58] 刘周莉, 何兴元, 陈玮. 忍冬——一种新发现的镉超富集植物[J]. 生态环境学报, 2013, 22(4):666-670. [59] 张杰, 周守标, 黄永杰, 等. 能源植物荻对铜胁迫的耐性和积累特性[J]. 水土保持学报, 2013, 27(2):168-172, 188. [60] 李伟, 韦晶晶, 刘爱民, 等. 吊兰生长对锌污染土壤微生物数量及土壤酶活性的影响[J]. 水土保持学报, 2013, 27(2):276-281. [61] 张呈祥, 陈为峰. 德国鸢尾对Cd胁迫的生理生态响应及积累特性[J]. 生态学报, 2013, 33(7):2165-2172. [62] 张呈祥, 陈为峰, 裴洪翠. 草地早熟禾对铅的胁迫反应及积累特性[J]. 中国草地学报, 2013, 35(1):96-101. [63] Vassil AD, Kapulink Y, Raskin I, et al. The role of EDTA in lead transport and accumulation by Indian mustard[J]. Plant Physiology, 1998, 117(20):447-453. [64] Wu LH, Luo YM, Christie P, et al. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil[J]. Chemosphere, 2003, 50:819-822. [65] Van Engelen DL, Sharpe-Pedler RC, Moorhead KK, et al. Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea[J]. Chemosphere, 2007, 68:401-408. [66] Deram A, Petit D, Robinson B. Natural and induced heavy metal accumulation by Arrhenatherum elatius:Implications for phytoremediation[J]. Communications in Soil Science and Plant Analysis, 2003, 31(3/4):413-421. [67] Zhou JH, Yang QW, Lan CY, et al. Heavy metal uptake and extraction potential of two Bechmeria nivea(L.)Gaud.(Ramie)varieties associated with chemical reagents[J]. Water, Air and Soil Pollution, 2010, 134:246-252. [68] 裘希雅, 孙小峰, 何旭华, 等. 施用EDDS对海州香薷铜锌吸收的强化作用及淋溶风险[J]. 浙江农业学报, 2006, 18(2):86-89. [69] Quartacci MF, Argilla A, Baker AJ, et al. Phytoextraction of metals from a multiply contaminated soil by Indian mustard[J]. Chemosphere, 2006, 63(6):918-925. [70] Campbell S, Paquin D, Awaya JD, et al. Remediation of Benzo[a]pyrene and chrysene contaminated soil with industrial hemp(Can-nabis sativa)[J]. International Journal of Phytoremediation, 2002, 4(2):157-168. [71] 许端平, 董天骄, 吕俊佳. 典型禾本科植物对石油污染土壤的修复作用[J]. 环境工程学报, 2012, 6(4):1398-1402. [72] 蔡顺香, 林琼, 邱孝煊, 等. 黑麦草及其根际土壤酶对芘胁迫的响应与植物修复研究[J]. 福建农业学报, 2013, 28(3):262-267. [73] 潘淑颖, 马光辉, 宋建民, 等. 特异性作物对土壤中DDT降解的诱导作用研究[J]. 农业灾害研究, 2012, 2(6):53-56, 62. [74] 董亚明, 赵朝成, 蔡芸, 等. 新疆石油污染土壤植物修复特性研究[J]. 干旱区研究, 2013, 30(1):162-165. [75] Cerňansky S, Koleník M, Sevc J, et al. Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions[J]. Bioresource Technology, 2009, 100:1037-1040. [76] Srivastava PK, Vaish A, Dwivedi S, et al, Biological removal of arsenic pollution by soil fungi[J]. Science of the Total Environment, 2011, 409:2430-2442. [77] Desjardin V, Bayard R, Huck N, et al. Effect of microbial activity on the mobility of chromium in soils[J].Waste Management, 2002, 22(2):195-200. [78] Chai L, Huang S, Yang Z, et al. Cr(VI)remediation by indigenous bacteria in soils contaminated by chromium-containing slag[J]. Journal of Hazardous Materials, 2009, 167(1-3):516-522. [79] Tiwari S, Kumari B, Singh S. Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps[J]. Bioresource Technology, 2008, 99:1305-1310. [80] 肖根林, 白红娟, 贾万利. 光合细菌对土壤中Cd形态分布的影响[J]. 化工技术与开发, 2011, 40(3):43-45. [81] 王莉丽, 吴蔓莉, 丁艺, 等. 油污土壤修复过程水溶性有机物光谱特性研究[J].安全与环境学报, 2012, 12(6):27-30. [82] 吴涛, 依艳丽, 谢文军, 等. 耐盐菌BF40产表面活性剂特性及其对石油污染盐渍化土壤的修复能力[J]. 农业环境科学学报, 2012, 31(12):2389-2396. [83] 董亚明, 刘其友, 赵东风, 等. 石油烃降解混合菌修复稠油污染土壤的影响因素[J]. 干旱区研究, 2013, 30(4):603-608. [84] Fidlej A, Dejong E, Costa GF. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi[J]. Applied and Environmental Microbiology, 1992, 58(7):2219-2226. [85] 罗雪梅, 何孟常, 刘昌明. 微生物对土壤与沉积物吸附多环芳烃的影响[J]. 环境科学, 2007, 28(2):261-266. [86] Wang L, Wen Y, Guo XQ, et al. Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway[J]. Biodegradation, 2010, 21:513-523. [87] Su D, Li PJ, Stagnitti F, et al. Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 coimmobilized on vermiculite[J]. Journal of Environmental Sciences, 2006, 18(6):1204-1209 [88] Ma Y, Dickinson NM, Wong MH. Interactions between earthworms, trees, soil nutrition and metal mobility in amended Pb/Zn mine tailings from Guangdong, China[J]. Soil Biology and Biochemistry, 2003, 35(10):1369-1379. [89] 马淑敏, 孙振钧, 王冲. 蚯蚓-甜高粱复合系统对土壤镉污染的修复作用及机理初探[J]. 农业环境科学学报, 2008, 27(1):133-138. [90] Rajkumar M, Freitas H. Influence of metal resistant plant growth promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere, 2008, 71(5):834-842. [91] Tseng CC, Wang JY, Yang L. Accumulation of copper, lead, and zinc by in situ plants inoculated with AM fungi in multicontaminated soil[J]. Communications in Soil Science and Plant Analysis, 2009, 40(21-22):3367-3386. [92] 李春荣, 王文科, 曹玉清. 石油污染土壤的生物修复研究[J]. 农业环境科学学报, 2009, 28(2):234-238. [93] Zhang ZZ, Su SM, Luo YJ, et al. Improvement of natural microbial remediation of petroleum-polluted soil using graminaceous plants[J]. Water Science & Technology, 2009, 59(5):1025-1035. [94] 卓胜, 苏嘉欣, 黎华寿, 等. 黑麦草-菌根-蚯蚓对多氯联苯污染土壤的联合修复效应[J]. 环境科学学报, 2011, 31(1):150-157. |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | XV Ru-yue, WANG Zi-xiao, SHEN Lu, WU Rong-rong, YAO Fang-ting, TAN Zhong-yuan, LIU Heng-wei, ZHANG Wen-chao. Research Progress in Bioremediation of Cr(VI) [J]. Biotechnology Bulletin, 2023, 39(6): 49-60. |
[3] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[4] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
[5] | GUO Wei, XUE Shuai, ZHANG Zhe-chao, DIAO Feng-wei, HU Jie, ZHANG Min, LIU Mei-chun, DING Sheng-li, JIA Bing-bing, SHI Zhong-qi. Research Progress on Bioremediation of Saline-alkali Grassland:A Review [J]. Biotechnology Bulletin, 2020, 36(7): 200-208. |
[6] | YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong. The Augmentation Strategies and Mechanisms in the Phytoremediation of Heavy Metal-contaminated Soil [J]. Biotechnology Bulletin, 2019, 35(1): 120-130. |
[7] | WANG Zi-long ,LUO Xue-gang ,SI Hui ,WANG Zhuo. Effects of Manganese and Arsenic on Uranium Enrichment of Bacillus licheniformis [J]. Biotechnology Bulletin, 2018, 34(6): 164-171. |
[8] | HAO Da-Cheng, ZHOU Jian-qiang, WANG Chuang, HAN Jun. Plant Bionic Remediation and Phytoremediation of Heavy Metal-contaminated Soil [J]. Biotechnology Bulletin, 2017, 33(2): 66-71. |
[9] | HAO Da-cheng, ZHOU Jian-qiang, HAN Jun. Microbial Remediation of Soil Heavy Metal and Organic Pollutants:Bioaugmentation and Biostimulation [J]. Biotechnology Bulletin, 2017, 33(10): 9-17. |
[10] | GAO Yu, CHENG Qian , ZHANG Meng-jun , ZHU Zhen-yu , HU Ting-ting, YANG Yu. Research Advance on Remediation Technology of Cadmium Contaminated Soil [J]. Biotechnology Bulletin, 2017, 33(10): 103-110. |
[11] | WANG Lin SUI ,Chun-xiao,, WANG Jin. Research Progress on Phytoremediation of Wastewater Containing Bisphenol A [J]. Biotechnology Bulletin, 2016, 32(4): 63-67. |
[12] | SUN Xian-feng, YANG Bo-bo, ZHU Xin-jie. On the Effect of Treating Petroleum-contaminated Soil by Different Bioremediation Technologies [J]. Biotechnology Bulletin, 2016, 32(3): 68-72. |
[13] | WANG Li-hui, YAN Chao-yu, WANG Hao, ZHANG Xiang-yu. Research Progress on Bioremediation Techniques for Mercury-contaminated Soil [J]. Biotechnology Bulletin, 2016, 32(2): 51-58. |
[14] | Sun Wanhong, Chen Lihua, Xu Hongwei. Effects of Nitrogen and Phosphorus Contents on the Oil Degradation Rate [J]. Biotechnology Bulletin, 2015, 31(6): 157-164. |
[15] | Fang Shumei, Liang Xilong, Li Chunyan. Bioremediation of Cyanide Contamination and Its Applications [J]. Biotechnology Bulletin, 2013, 0(8): 36-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||