[1] Gowik U, Westhoff P. C4-phosphoenolpyruvate carboxylase[M]//C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Springer Netherlands, 2011:257-275. [2]Christin PA, Petitpierre B, Salamin N, et al. Evolution of C4 phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype[J]. Molecular Biology and Evolution, 2009, 26(2):357-365. [3]Gehrig H, Taybi T, Kluge M, et al. Identification of multiple PEPC isogenes in leaves of the facultative crassulacean acid metabolism(CAM)plant Kalanchoe blossfeldiana Poelln. cv. Tom Thumb[J]. FEBS Letters, 1995, 377(3):399-402. [4]Uhrig RG O’Leary B, Spang HE, et al. Coimmunopurification of phosphorylated bacterial-and plant-type phosphoenolpyruvate carbo-xylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds[J]. Plant Physiology, 2008, 146(3):1346-1357. [5] O’Leary B, Rao SK, Kim J, et al. Bacterial-type phosphoenolpyruvate carboxylase(PEPC)functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants[J]. Journal of Biological Chemistry, 2009, 284(37):24797-24805. [6]Izui K, Matsumura H, Furumoto T, et al. Phosphoenolpyruvate carboxylase:a new era of structural biology[J]. Annu Rev Plant Biol, 2004, 55:69-84. [7]Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Molecular Plant, 2010, 3(6):973-996. [8]Brendan OL, Joonho P, William CP. The remarkable diversity of plant PEPC(phosphoenolpyruvate carboxylase):recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs[J]. Biochemical Journal, 2011, 436(1):15-34. [9]Rivoal J, Dunford R, Plaxton WC, et al. Purification and properties of four phosphoenolpyruvate carboxylase isoforms from the Green Alga Selenastrum minutum:evidence that association of the 102-kDa catalytic subunit with unrelated polypeptides may modify the physical and kinetic properties of the enzyme[J]. Archives of Biochemistry and Biophysics, 1996, 332(1):47-57. [10]Mamedov TG, Chollet R. Discovery of novel phosphoenolpyruvate carboxylase(PEPC)genes and their active polypeptides in the green microalga Chlamydomonas reinhardtii[J]. Proceedings of ANAS(Biological Sciences), 2010, 65(5-6):99-105. [11]Rivoal J, Turpin DH, Plaxton WC. In vitro phosphorylation of phosphoenolpyruvate carboxylase from the green alga Selenastrum minutum[J]. Plant and Cell Physiology, 2002, 43(7):785-792. [12] Feng FY, Yang W, Jiang GZ, et al. Enhancement of fatty acid prod-uction of Chlorella sp.(Chlorophyceae)by addition of glucose and sodium thiosulphate to culture medium[J]. Process Biochemistry, 2005, 40(3):1315-1318. [13] Sambrook J, Russell DW. Molecular cloning:A laboratory manual[M]. 3nd ed. Science Press, 2002:1595. [14] Deng X, Li Y, Fei X. The mRNA abundance of pepc2 gene is negat-ively correlated with oil content in Chlamydomonas reinhardtii[J]. Biomass and Bioenergy, 2011, 35(5):1811-1817. [15] Bowler C, Allen AE, Badger JH, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7219):239-244. [16]Worden AZ, Lee JH, Mock T, et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas[J]. Science, 2009, 324(5924):268-272. [17]Derelle E, Ferraz C, Rombauts S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features[J]. Proceedings of the National Academy of Sciences, 2006, 103(31):11647-11652. [18]Prochnik SE, Umen J, Nedelcu AM, et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri[J]. Science, 2010, 329(5988):223-226. [19]O’ Leary B, Rao S, Plaxton W. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds[J]. Biochem J, 2011, 433:65-74. [20]Sánchez R, Cejudo FJ. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice[J]. Plant Physiology, 2003, 132(2):949-957. [21]Gennidakis S, Rao S, Greenham K, et al. Bacterial-and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds[J]. The Plant Journal, 2007, 52(5):839-849. [22] Mamedov TG, Moellering ER, Chollet R. Identification and expres-sion analysis of two inorganic C-and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyru-vate carboxylase in the green microalga Chlamydomonas reinhar-dtii[J]. The Plant Journal, 2005, 42(6):832-843. [23] Matsumura H, Xie Y, Shirakata S, et al. Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases[J]. Structure, 2002, 10(12):1721-1730. [24] Inoue M, Hayashi M, Sugimoto M, et al. First crystallization of a phosphoenolpyruvate carboxylase from Escherichia coli[J]. Journal of Molecular Biology, 1989, 208(3):509-510. [25] Kai Y, Matsumura H, Inoue T, et al. Three-dimensional structure of phosphoenolpyruvate carboxylase:a proposed mechanism for allosteric inhibition[J]. Proceedings of the National Academy of Sciences, 1999, 96(3):823-828. [26] Matsumura H, Terada M, Shirakata S, et al. Plausible phosphoenol-pyruvate binding site revealed by 2.6 ? structure of Mn2+-bound phosphoenolpyruvate carboxylase from Escherichia coli[J]. FEBS Letters, 1999, 458(2):93-96. [27] Rivoal J, Trzos S, Gage DA, et al. Two unrelated phosphoenolpyru-vate carboxylase polypeptides physically interact in the high mole-cular mass isoforms of this enzyme in the unicellular green alga Selenastrum minutum[J]. Journal of Biological Chemistry, 2001, 276(16):12588-12597. [28] Moellering ER, Ouyang Y, Mamedov TG, et al. The two divergent PEP-carboxylase catalytic subunits in the green microalga Chlam-ydomonas reinhardtii respond reversibly to inorganic-N supply and co-exist in the high-molecular-mass, hetero-oligomeric Class-2 PEPC complex[J]. FEBS Letters, 2007, 581(25):4871-4876. [29] Plaxton WC, Podestá FE. The functional organization and control of plant respiration[J]. Critical Reviews in Plant Sciences, 2006, 25(2):159-198. |