Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 88-101.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1329
Previous Articles Next Articles
LI Tuo1,2(), LI Long-ping1,2(), QU Lei1,2
Received:
2022-10-27
Online:
2023-06-26
Published:
2023-07-07
Contact:
LI Long-ping
E-mail:lituo0105@126.com;llp_315@163.com
LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors[J]. Biotechnology Bulletin, 2023, 39(6): 88-101.
噬菌体类型 Phage type | 特征 Features | 噬菌体 Phage species | 宿主细菌 Host bacterium | 噬菌体受体结合蛋白 Receptor-binding protein | 受体 Receptor | 参考文献 References |
---|---|---|---|---|---|---|
肌尾科噬菌体 Myoviridae | 具有长的可收缩尾巴 Long contractile tail | T2、T4 | 大肠杆菌Escherichia coli | 尾部纤维 | OmpC、OmpF | [ |
SPN3US | 沙门氏菌Salmonella enterica | 尾部纤维 | 鞭毛 | [ | ||
MAM1 | 沙雷氏菌属、克鲁维菌属 Enterobacterial genera Serratia and Kluyvera | 尾钉 | 荚膜 | [ | ||
Det7 | 沙门氏菌S. enterica | 尾钉 | 脂多糖 | [ | ||
JG004 | 铜绿假单胞菌 Pseudomonas aeruginosa | - | 脂多糖 | [ | ||
长尾科噬菌体 Siphoviridae | 具有长的不可收缩尾巴 Long non-contractile tail | T5 | 大肠杆菌E. coli | 尾部纤维 | 脂多糖O抗原 | [ |
SSU5 | 沙门氏菌S. enterica | 尾部纤维 | 脂多糖核心多糖 | [ | ||
λ、TLS、H8、phi2013 | 大肠杆菌 E. coli | 尾部纤维 | LamB、TolC、FepA、FhuA | [ | ||
iEPS5 | 沙门氏菌S. enterica | 尾部纤维 | 鞭毛 | [ | ||
DMS3 | 铜绿假单胞菌P. aeruginosa | 尾部纤维 | 菌毛 | [ | ||
Vi-II | 沙门氏菌S. enterica | 尾钉 | 荚膜 | [ | ||
9NA | 沙门氏菌S. enterica | 尾钉 | 脂多糖 | [ | ||
phiChi13、phiCbK | Caulobacter crescentus | 衣壳 | 鞭毛 | [ | ||
SPC35 | 沙门氏菌S. enterica | 尾部纤维 | BtuB | [ | ||
SPN7C、9C、10H、12C、14、17T、18 | 沙门氏菌S. enterica | - | 鞭毛Flagella、BtuB、脂多糖O抗原 | [ | ||
短尾科噬菌体 Podoviridae | 具有短的可收缩尾巴 Short contractile tail | T3、T4、T7 | 大肠杆菌E. coli | 尾部纤维 | LPS, OmpC | [ |
Bp7 | 大肠杆菌E. coli | - | LamB、OmpC、HepI | [ | ||
Yep-phi | 鼠疫耶尔氏菌Yersinia pestis | 尾部纤维 | Ail、OmpF | [ | ||
MPK7 | 铜绿假单胞菌P. aeruginosa | 尾部纤维 | IV型菌毛 | [ | ||
phiK1-K5 | 大肠杆菌E. coli | 尾钉 | 荚膜 | [ | ||
P22 | 沙门氏菌S. enterica | 尾钉 | 脂多糖O抗原 | [ | ||
Sf6 | 志贺氏杆菌Shigella flexneri | 尾钉 | OmpA | [ |
Table 1 Gram-negative bacteria-specific bacteriophage receptor binding proteins and receptors
噬菌体类型 Phage type | 特征 Features | 噬菌体 Phage species | 宿主细菌 Host bacterium | 噬菌体受体结合蛋白 Receptor-binding protein | 受体 Receptor | 参考文献 References |
---|---|---|---|---|---|---|
肌尾科噬菌体 Myoviridae | 具有长的可收缩尾巴 Long contractile tail | T2、T4 | 大肠杆菌Escherichia coli | 尾部纤维 | OmpC、OmpF | [ |
SPN3US | 沙门氏菌Salmonella enterica | 尾部纤维 | 鞭毛 | [ | ||
MAM1 | 沙雷氏菌属、克鲁维菌属 Enterobacterial genera Serratia and Kluyvera | 尾钉 | 荚膜 | [ | ||
Det7 | 沙门氏菌S. enterica | 尾钉 | 脂多糖 | [ | ||
JG004 | 铜绿假单胞菌 Pseudomonas aeruginosa | - | 脂多糖 | [ | ||
长尾科噬菌体 Siphoviridae | 具有长的不可收缩尾巴 Long non-contractile tail | T5 | 大肠杆菌E. coli | 尾部纤维 | 脂多糖O抗原 | [ |
SSU5 | 沙门氏菌S. enterica | 尾部纤维 | 脂多糖核心多糖 | [ | ||
λ、TLS、H8、phi2013 | 大肠杆菌 E. coli | 尾部纤维 | LamB、TolC、FepA、FhuA | [ | ||
iEPS5 | 沙门氏菌S. enterica | 尾部纤维 | 鞭毛 | [ | ||
DMS3 | 铜绿假单胞菌P. aeruginosa | 尾部纤维 | 菌毛 | [ | ||
Vi-II | 沙门氏菌S. enterica | 尾钉 | 荚膜 | [ | ||
9NA | 沙门氏菌S. enterica | 尾钉 | 脂多糖 | [ | ||
phiChi13、phiCbK | Caulobacter crescentus | 衣壳 | 鞭毛 | [ | ||
SPC35 | 沙门氏菌S. enterica | 尾部纤维 | BtuB | [ | ||
SPN7C、9C、10H、12C、14、17T、18 | 沙门氏菌S. enterica | - | 鞭毛Flagella、BtuB、脂多糖O抗原 | [ | ||
短尾科噬菌体 Podoviridae | 具有短的可收缩尾巴 Short contractile tail | T3、T4、T7 | 大肠杆菌E. coli | 尾部纤维 | LPS, OmpC | [ |
Bp7 | 大肠杆菌E. coli | - | LamB、OmpC、HepI | [ | ||
Yep-phi | 鼠疫耶尔氏菌Yersinia pestis | 尾部纤维 | Ail、OmpF | [ | ||
MPK7 | 铜绿假单胞菌P. aeruginosa | 尾部纤维 | IV型菌毛 | [ | ||
phiK1-K5 | 大肠杆菌E. coli | 尾钉 | 荚膜 | [ | ||
P22 | 沙门氏菌S. enterica | 尾钉 | 脂多糖O抗原 | [ | ||
Sf6 | 志贺氏杆菌Shigella flexneri | 尾钉 | OmpA | [ |
噬菌体类型 Phage type | 特征 Features | 噬菌体 Phage species | 宿主细菌 Host bacterium | 噬菌体受体结合蛋白 Receptor-binding protein | 受体 Receptor | 参考文献 References |
---|---|---|---|---|---|---|
肌尾科噬菌体 Myoviridae | 具有长的可收缩尾巴 Long contractile tail | γ | 炭疽杆菌Bacillus anthracis | 尾部纤维 | GamR | [ |
A511 | 李斯特菌Listeria monocytogenes | 尾部纤维 | 磷壁酸,肽聚糖 | [ | ||
φ812、φK | 金黄色葡萄球菌 Staphylococcus aureus | - | 磷壁酸 | [ | ||
长尾科噬菌体 Siphoviridae | 具有长的不可收缩尾巴 Long non-contractile tail | IL-H | 德氏乳酸杆菌 Lactobacillus delbrueckii | 尾部纤维 | 磷壁酸 | [ |
SPP1 | 枯草芽孢杆菌B. subtilis | 尾钉 | YueB | [ | ||
φSLT | 金黄色葡萄球菌 Staphylococcus aureus | 中央尾尖 | 磷壁酸 | [ | ||
短尾科噬菌体 Podoviridae | 具有短的可收缩尾巴 Short contractile tail | phi29 | 枯草芽孢杆菌B. subtilis | 尾钉 | 磷壁酸 | [ |
P2 | 乳酸乳球菌Lactococcus lactis | 尾部纤维 | 细胞壁 | [ |
Table 1 Gram-positive bacteria-specific bacteriophage receptor-binding proteins and receptor types
噬菌体类型 Phage type | 特征 Features | 噬菌体 Phage species | 宿主细菌 Host bacterium | 噬菌体受体结合蛋白 Receptor-binding protein | 受体 Receptor | 参考文献 References |
---|---|---|---|---|---|---|
肌尾科噬菌体 Myoviridae | 具有长的可收缩尾巴 Long contractile tail | γ | 炭疽杆菌Bacillus anthracis | 尾部纤维 | GamR | [ |
A511 | 李斯特菌Listeria monocytogenes | 尾部纤维 | 磷壁酸,肽聚糖 | [ | ||
φ812、φK | 金黄色葡萄球菌 Staphylococcus aureus | - | 磷壁酸 | [ | ||
长尾科噬菌体 Siphoviridae | 具有长的不可收缩尾巴 Long non-contractile tail | IL-H | 德氏乳酸杆菌 Lactobacillus delbrueckii | 尾部纤维 | 磷壁酸 | [ |
SPP1 | 枯草芽孢杆菌B. subtilis | 尾钉 | YueB | [ | ||
φSLT | 金黄色葡萄球菌 Staphylococcus aureus | 中央尾尖 | 磷壁酸 | [ | ||
短尾科噬菌体 Podoviridae | 具有短的可收缩尾巴 Short contractile tail | phi29 | 枯草芽孢杆菌B. subtilis | 尾钉 | 磷壁酸 | [ |
P2 | 乳酸乳球菌Lactococcus lactis | 尾部纤维 | 细胞壁 | [ |
[14] |
Dobbins AT, George M Jr, Basham DA, et al. Complete genomic sequence of the virulent Salmonella bacteriophage SP6[J]. J Bacteriol, 2004, 186(7): 1933-1944.
doi: 10.1128/JB.186.7.1933-1944.2004 URL |
[15] |
Walter M, Fiedler C, Grassl R, et al. Structure of the receptor-binding protein of bacteriophage det7: a podoviral tail spike in a myovirus[J]. J Virol, 2008, 82(5): 2265-2273.
doi: 10.1128/JVI.01641-07 pmid: 18077713 |
[16] |
Olszak T, Shneider MM, Latka A, et al. The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence[J]. Sci Rep, 2017, 7(1): 16302.
doi: 10.1038/s41598-017-16411-4 |
[17] | Kutter EM, Skutt-Kakaria K, Blasdel B, et al. Characterization of a ViI-like phage specific to Escherichia coli O157: H7[J]. Virol J, 2011, 8: 430. |
[18] |
Pickard D, Toribio AL, Petty NK, et al. A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar Typhi[J]. J Bacteriol, 2010, 192(21): 5746-5754.
doi: 10.1128/JB.00659-10 pmid: 20817773 |
[19] |
Cerritelli ME, Wall JS, Simon MN, et al. Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhesin[J]. J Mol Biol, 1996, 260(5): 767-780.
pmid: 8709154 |
[20] |
Hashemolhosseini S, Stierhof YD, Hindennach I, et al. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda[J]. J Bacteriol, 1996, 178(21): 6258-6265.
pmid: 8892827 |
[21] |
Bartual SG, Otero JM, Garcia-Doval C, et al. Structure of the bacteriophage T4 long tail fiber receptor-binding tip[J]. Proc Natl Acad Sci USA, 2010, 107(47): 20287-20292.
doi: 10.1073/pnas.1011218107 pmid: 21041684 |
[22] |
Washizaki A, Yonesaki T, Otsuka Y. Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers[J]. MicrobiologyOpen, 2016, 5(6): 1003-1015.
doi: 10.1002/mbo3.384 pmid: 27273222 |
[23] |
van Raaij MJ, Schoehn G, Burda MR, et al. Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre[J]. J Mol Biol, 2001, 314(5): 1137-1146.
pmid: 11743729 |
[24] |
Mason WS. Product of T4 gene 12[J]. J Mol Biol, 1972, 66(3): 445-469.
pmid: 4624817 |
[25] |
Burda MR, Miller S. Folding of coliphage T4 short tail fiber in vitro. Analysing the role of a bacteriophage-encoded chaperone[J]. Eur J Biochem, 1999, 265(2): 771-778.
pmid: 10504409 |
[26] |
Leiman PG, Shneider MM, Mesyanzhinov VV, et al. Evolution of bacteriophage tails: structure of T4 gene product 10[J]. J Mol Biol, 2006, 358(3): 912-921.
pmid: 16554069 |
[27] |
Garcia-Doval C, Luque D, Castón JR, et al. Crystallization of the C-terminal domain of the bacteriophage T5 L-shaped fibre[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2013, 69(Pt 12): 1363-1367.
doi: 10.1107/S1744309113028959 pmid: 24316831 |
[28] |
Garcia-Doval C, van Raaij MJ. Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers[J]. Proc Natl Acad Sci USA, 2012, 109(24): 9390-9395.
doi: 10.1073/pnas.1119719109 pmid: 22645347 |
[29] |
Veesler D, Cambillau C. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries[J]. Microbiol Mol Biol Rev, 2011, 75(3): 423-433.
doi: 10.1128/MMBR.00014-11 URL |
[30] |
Pires DP, Oliveira H, Melo LDR, et al. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications[J]. Appl Microbiol Biotechnol, 2016, 100(5): 2141-2151.
doi: 10.1007/s00253-015-7247-0 pmid: 26767986 |
[31] |
Boulanger P, Jacquot P, Plançon L, et al. Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities[J]. J Biol Chem, 2008, 283(20): 13556-13564.
doi: 10.1074/jbc.M800052200 pmid: 18348984 |
[32] |
Cumby N, Reimer K, Mengin-Lecreulx D, et al. The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97[J]. Mol Microbiol, 2015, 96(3): 437-447.
doi: 10.1111/mmi.2015.96.issue-3 URL |
[33] |
Bhardwaj A, Olia AS, Walker-Kopp N, et al. Domain organization and polarity of tail needle GP26 in the portal vertex structure of bacteriophage P22[J]. J Mol Biol, 2007, 371(2): 374-387.
pmid: 17574574 |
[1] |
Ackermann HW. 5500 Phages examined in the electron microscope[J]. Arch Virol, 2007, 152(2): 227-243.
doi: 10.1007/s00705-006-0849-1 pmid: 17051420 |
[2] |
Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy[J]. Viruses, 2021, 13(3): 506.
doi: 10.3390/v13030506 URL |
[3] |
Leiman PG, Shneider MM. Contractile tail machines of bacteriophages[J]. Adv Exp Med Biol, 2012, 726: 93-114.
doi: 10.1007/978-1-4614-0980-9_5 pmid: 22297511 |
[4] |
Nobrega FL, Vlot M, de Jonge PA, et al. Targeting mechanisms of tailed bacteriophages[J]. Nat Rev Microbiol, 2018, 16(12): 760-773.
doi: 10.1038/s41579-018-0070-8 pmid: 30104690 |
[5] |
Cuervo A, Pulido-Cid M, Chagoyen M, et al. Structural characterization of the bacteriophage T7 tail machinery[J]. J Biol Chem, 2013, 288(36): 26290-26299.
doi: 10.1074/jbc.M113.491209 pmid: 23884409 |
[6] |
González-García VA, Pulido-Cid M, Garcia-Doval C, et al. Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor[J]. J Biol Chem, 2015, 290(16): 10038-10044.
doi: 10.1074/jbc.M114.614222 pmid: 25697363 |
[7] | Hu B, Margolin W, Molineux IJ, et al. Structural remodeling of bacteriophage T4 and host membranes during infection initiation[J]. PNAS, 2015, 112(35): E4919-4928. |
[8] |
Gordillo Altamirano FL, Barr JJ. Unlocking the next generation of phage therapy: the key is in the receptors[J]. Curr Opin Biotechnol, 2021, 68: 115-123.
doi: 10.1016/j.copbio.2020.10.002 URL |
[9] |
Trojet SN, Caumont-Sarcos A, Perrody E, et al. The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage's host specificity[J]. Genome Biol Evol, 2011, 3: 674-686.
doi: 10.1093/gbe/evr059 pmid: 21746838 |
[10] | Letarov AV, Kulikov EE. Adsorption of bacteriophages on bacterial cells[J]. Biochemistry(Mosc), 2017, 82(13): 1632-1658. |
[11] |
Steinbacher S, Miller S, Baxa U, et al. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage[J]. J Mol Biol, 1997, 267(4): 865-880.
doi: 10.1006/jmbi.1997.0922 pmid: 9135118 |
[12] |
Andres D, Hanke C, Baxa U, et al. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro[J]. J Biol Chem, 2010, 285(47): 36768-36775.
doi: 10.1074/jbc.M110.169003 URL |
[13] |
Barbirz S, Müller JJ, Uetrecht C, et al. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related[J]. Mol Microbiol, 2008, 69(2): 303-316.
doi: 10.1111/mmi.2008.69.issue-2 URL |
[34] |
Olia AS, Casjens S, Cingolani G. Structure of phage P22 cell envelope-penetrating needle[J]. Nat Struct Mol Biol, 2007, 14(12): 1221-1226.
doi: 10.1038/nsmb1317 |
[35] |
Xiang Y, Morais MC, Cohen DN, et al. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail[J]. Proc Natl Acad Sci USA, 2008, 105(28): 9552-9557.
doi: 10.1073/pnas.0803787105 pmid: 18606992 |
[36] |
Xu JW, Gui M, Wang DH, et al. The bacteriophage ϕ29 tail possesses a pore-forming loop for cell membrane penetration[J]. Nature, 2016, 534(7608): 544-547.
doi: 10.1038/nature18017 |
[37] |
Berkane E, Orlik F, Stegmeier JF, et al. Interaction of bacteriophage lambda with its cell surface receptor: an in vitro study of binding of the viral tail protein gpJ to LamB(Maltoporin)[J]. Biochemistry, 2006, 45(8): 2708-2720.
pmid: 16489764 |
[38] |
Yoichi M, Abe M, Miyanaga K, et al. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157: H7[J]. J Biotechnol, 2005, 115(1): 101-107.
doi: 10.1016/j.jbiotec.2004.08.003 URL |
[39] |
Lee JH, Shin H, Kim H, et al. Complete genome sequence of Salmonella bacteriophage SPN3US[J]. J Virol, 2011, 85(24): 13470-13471.
doi: 10.1128/JVI.06344-11 URL |
[40] |
Matilla MA, Salmond GPC. Bacteriophage ϕMAM1, a Viunalike-virus, is a broad-host-range, high-efficiency generalized transducer that infects environmental and clinical isolates of the enterobacterial genera Serratia and Kluyvera[J]. Appl Environ Microbiol, 2014, 80(20): 6446-6457.
doi: 10.1128/AEM.01546-14 URL |
[41] |
Garbe J, Bunk B, Rohde M, et al. Sequencing and characterization of Pseudomonas aeruginosa phage JG004[J]. BMC Microbiol, 2011, 11: 102.
doi: 10.1186/1471-2180-11-102 |
[42] |
Heller K, Braun V. Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding[J]. J Bacteriol, 1979, 139(1): 32-38.
doi: 10.1128/jb.139.1.32-38.1979 pmid: 378958 |
[43] |
Kim M, Kim S, Park B, et al. Core lipopolysaccharide-specific phage SSU5 as an auxiliary component of a phage cocktail for Salmonella biocontrol[J]. Appl Environ Microbiol, 2014, 80(3): 1026-1034.
doi: 10.1128/AEM.03494-13 URL |
[44] |
Rabsch W, Ma L, Wiley G, et al. FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence[J]. J Bacteriol, 2007, 189(15): 5658-5674.
pmid: 17526714 |
[45] |
Wang J, Hofnung M, Charbit A. The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12[J]. J Bacteriol, 2000, 182(2): 508-512.
doi: 10.1128/JB.182.2.508-512.2000 pmid: 10629200 |
[46] |
German GJ, Misra R. The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage[J]. J Mol Biol, 2001, 308(4): 579-585.
pmid: 11350161 |
[47] |
Li DH, Zhang ZQ, Li YY, et al. Escherichia coli phage phi2013: genomic analysis and receptor identification[J]. Arch Virol, 2022, 167(12): 2689-2702.
doi: 10.1007/s00705-022-05617-1 |
[48] |
Choi Y, Shin H, Lee JH, et al. Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5[J]. Appl Environ Microbiol, 2013, 79(16): 4829-4837.
doi: 10.1128/AEM.00706-13 URL |
[49] |
Budzik JM, Rosche WA, Rietsch A, et al. Isolation and characterization of a generalized transducing phage for Pseudomonas aeruginosa strains PAO1 and PA14[J]. J Bacteriol, 2004, 186(10): 3270-3273.
doi: 10.1128/JB.186.10.3270-3273.2004 URL |
[50] |
Guerrero-Ferreira RC, Viollier PH, Ely B, et al. Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus[J]. Proc Natl Acad Sci USA, 2011, 108(24): 9963-9968.
doi: 10.1073/pnas.1012388108 pmid: 21613567 |
[51] |
Kim M, Ryu S. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium[J]. Mol Microbiol, 2012, 86(2): 411-425.
doi: 10.1111/j.1365-2958.2012.08202.x URL |
[52] |
Shin H, Lee JH, Kim H, et al. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium[J]. PLoS One, 2012, 7(8): e43392.
doi: 10.1371/journal.pone.0043392 URL |
[53] |
Prehm P, Jann B, Jann K, et al. On a bacteriophage T3 and T4 receptor region within the cell wall lipopolysaccharide of Escherichia coli B[J]. J Mol Biol, 1976, 101(2): 277-281.
pmid: 772219 |
[54] |
Suga A, Kawaguchi M, Yonesaki T, et al. Manipulating interactions between T4 phage long tail fibers and Escherichia coli receptors[J]. Appl Environ Microbiol, 2021, 87(13): e0042321.
doi: 10.1128/AEM.00423-21 URL |
[55] | Chen PP, Sun HZ, Ren HY, et al. LamB, OmpC, and the core lipopolysaccharide of Escherichia coli K-12 function as receptors of bacteriophage Bp7[J]. J Virol, 2020, 94(12): e00325-e00320. |
[56] |
Zhao XN, Cui YJ, Yan YF, et al. Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi[J]. J Virol, 2013, 87(22): 12260-12269.
doi: 10.1128/JVI.01948-13 URL |
[57] | Bae HW, Cho YH. Complete genome sequence of Pseudomonas aeruginosa podophage MPK7, which requires type IV pili for infection[J]. Genome Announc, 2013, 1(5): e00744-e00713. |
[58] |
Scholl D, Rogers S, Adhya S, et al. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli[J]. J Virol, 2001, 75(6): 2509-2515.
pmid: 11222673 |
[59] |
Perez GL, Huynh B, Slater M, et al. Transport of phage P22 DNA across the cytoplasmic membrane[J]. J Bacteriol, 2009, 191(1): 135-140.
doi: 10.1128/JB.00778-08 pmid: 18978055 |
[60] |
Parent KN, Erb ML, Cardone G, et al. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella[J]. Mol Microbiol, 2014, 92(1): 47-60.
doi: 10.1111/mmi.2014.92.issue-1 URL |
[61] |
Davison S, Couture-Tosi E, Candela T, et al. Identification of the Bacillus anthracis(gamma)phage receptor[J]. J Bacteriol, 2005, 187(19): 6742-6749.
doi: 10.1128/JB.187.19.6742-6749.2005 pmid: 16166537 |
[62] |
Habann M, Leiman PG, Vandersteegen K, et al. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages[J]. Mol Microbiol, 2014, 92(1): 84-99.
doi: 10.1111/mmi.2014.92.issue-1 URL |
[63] |
Xia GQ, Corrigan RM, Winstel V, et al. Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus[J]. J Bacteriol, 2011, 193(15): 4006-4009.
doi: 10.1128/JB.01412-10 pmid: 21642458 |
[64] |
Munsch-Alatossava P, Alatossava T. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808[J]. Front Microbiol, 2013, 4: 408.
doi: 10.3389/fmicb.2013.00408 pmid: 24400001 |
[65] |
Baptista C, Santos MA, São-José C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB[J]. J Bacteriol, 2008, 190(14): 4989-4996.
doi: 10.1128/JB.00349-08 URL |
[66] |
Kaneko J, Narita-Yamada S, Wakabayashi Y, et al. Identification of ORF636 in phage φSLT carrying Panton-Valentine leukocidin genes, acting as an adhesion protein for a poly(glycerophosphate)chain of lipoteichoic acid on the cell surface of Staphylococcus aureus[J]. J Bacteriol, 2009, 191(14): 4674-4680.
doi: 10.1128/JB.01793-08 pmid: 19429614 |
[67] |
Bebeacua C, Tremblay D, Farenc C, et al. Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2[J]. J Virol, 2013, 87(22): 12302-12312.
doi: 10.1128/JVI.02033-13 pmid: 24027307 |
[68] |
Kiljunen S, Datta N, Dentovskaya SV, et al. Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122[J]. J Bacteriol, 2011, 193(18): 4963-4972.
doi: 10.1128/JB.00339-11 pmid: 21764935 |
[69] |
Pajunen M, Kiljunen S, Skurnik M. Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O: 3, is related to coliphages T3 and T7[J]. J Bacteriol, 2000, 182(18): 5114-5120.
doi: 10.1128/JB.182.18.5114-5120.2000 pmid: 10960095 |
[70] |
Bohm K, Porwollik S, Chu WP, et al. Genes affecting progression of bacteriophage P22 infection in Salmonella identified by transposon and single gene deletion screens[J]. Mol Microbiol, 2018, 108(3): 288-305.
doi: 10.1111/mmi.2018.108.issue-3 URL |
[71] |
Le S, Yao XY, Lu SG, et al. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa[J]. Sci Rep, 2014, 4: 4738.
doi: 10.1038/srep04738 |
[72] |
Xu JL, Zhang JY, Lu X, et al. O antigen is the receptor of Vibrio cholerae serogroup O1 El Tor typing phage VP4[J]. J Bacteriol, 2013, 195(4): 798-806.
doi: 10.1128/JB.01770-12 URL |
[73] |
Köhler T, Donner V, van Delden C. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa[J]. J Bacteriol, 2010, 192(7): 1921-1928.
doi: 10.1128/JB.01459-09 pmid: 20118263 |
[74] |
Rakhuba DV, Kolomiets EI, Dey ES, et al. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell[J]. Pol J Microbiol, 2010, 59(3): 145-155.
pmid: 21033576 |
[75] |
Ricci V, Piddock LJV. Exploiting the role of TolC in pathogenicity: identification of a bacteriophage for eradication of Salmonella serovars from poultry[J]. Appl Environ Microbiol, 2010, 76(5): 1704-1706.
doi: 10.1128/AEM.02681-09 URL |
[76] |
Breyton C, Flayhan A, Gabel F, et al. Assessing the conformational changes of Pb5, the receptor-binding protein of phage T5, upon binding to its Escherichia coli receptor FhuA[J]. J Biol Chem, 2013, 288(42): 30763-30772.
doi: 10.1074/jbc.M113.501536 pmid: 24014030 |
[77] |
Porcek NB, Parent KN. Key residues of S. flexneri OmpA mediate infection by bacteriophage Sf6[J]. J Mol Biol, 2015, 427(10): 1964-1976.
doi: 10.1016/j.jmb.2015.03.012 URL |
[78] |
Xu DL, Zhang JY, Liu J, et al. Outer membrane protein OmpW is the receptor for typing phage VP5 in the Vibrio cholerae O1 El Tor biotype[J]. J Virol, 2014, 88(12): 7109-7111.
doi: 10.1128/JVI.03186-13 URL |
[79] |
Meyer JR, Dobias DT, Weitz JS, et al. Repeatability and contingency in the evolution of a key innovation in phage lambda[J]. Science, 2012, 335(6067): 428-432.
doi: 10.1126/science.1214449 pmid: 22282803 |
[80] |
Müller JJ, Barbirz S, Heinle K, et al. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6[J]. Structure, 2008, 16(5): 766-775.
doi: 10.1016/j.str.2008.01.019 URL |
[81] |
Koebnik R, Locher KP, van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell[J]. Mol Microbiol, 2000, 37(2): 239-253.
doi: 10.1046/j.1365-2958.2000.01983.x pmid: 10931321 |
[82] |
Li XH, Koç C, Kühner P, et al. An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus[J]. Sci Rep, 2016, 6: 26455.
doi: 10.1038/srep26455 |
[83] |
São-José C, Lhuillier S, Lurz R, et al. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA[J]. J Biol Chem, 2006, 281(17): 11464-11470.
doi: 10.1074/jbc.M513625200 pmid: 16481324 |
[84] |
Monteville MR, Ardestani B, Geller BL. Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA[J]. Appl Environ Microbiol, 1994, 60(9): 3204-3211.
doi: 10.1128/aem.60.9.3204-3211.1994 URL |
[85] |
Farenc C, Spinelli S, Vinogradov E, et al. Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein[J]. J Virol, 2014, 88(12): 7005-7015.
doi: 10.1128/JVI.00739-14 URL |
[86] |
Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors[J]. Cell, 2017, 168(1/2): 186-199.e12.
doi: 10.1016/j.cell.2016.12.003 URL |
[87] |
Yen JY, Broadway KM, Scharf BE. Minimum requirements of flagellation and motility for infection of Agrobacterium sp. strain H13-3 by flagellotropic bacteriophage 7-7-1[J]. Appl Environ Microbiol, 2012, 78(20): 7216-7222.
doi: 10.1128/AEM.01082-12 URL |
[88] |
Kim S, Rahman M, Seol SY, et al. Pseudomonas aeruginosa bacteriophage PA1Ø requires type IV pili for infection and shows broad bactericidal and biofilm removal activities[J]. Appl Environ Microbiol, 2012, 78(17): 6380-6385.
doi: 10.1128/AEM.00648-12 URL |
[89] |
Raimondo LM, Lundh NP, Martinez RJ. Primary adsorption site of phage PBS1: the flagellum of Bacillus subtilis[J]. J Virol, 1968, 2(3): 256-264.
pmid: 4986906 |
[90] | Evans TJ, Crow MA, Williamson NR, et al. Characterization of a broad-host-range flagellum-dependent phage that mediates high-efficiency generalized transduction in, and between, Serratia and Pantoea[J]. Microbiology(Reading), 2010, 156(Pt 1): 240-247. |
[91] |
Pate JL, Petzold SJ, Umbreit TH. Two flagellotropic phages and one Pilus-specific phage active against Asticcacaulis biprosthecum[J]. Virology, 1979, 94(1): 24-37.
pmid: 18627889 |
[92] |
Chibeu A, Ceyssens PJ, Hertveldt K, et al. The adsorption of Pseudomonas aeruginosa bacteriophage phiKMV is dependent on expression regulation of type IV pili genes[J]. FEMS Microbiol Lett, 2009, 296(2): 210-218.
doi: 10.1111/fml.2009.296.issue-2 URL |
[93] |
Harvey H, Bondy-Denomy J, Marquis H, et al. Pseudomonas aeruginosa defends against phages through type IV Pilus glycosylation[J]. Nat Microbiol, 2018, 3(1): 47-52.
doi: 10.1038/s41564-017-0061-y |
[94] |
Sørensen MC, van Alphen LB, Harboe A, et al. Bacteriophage F336 recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168[J]. J Bacteriol, 2011, 193(23): 6742-6749.
doi: 10.1128/JB.05276-11 pmid: 21965558 |
[95] |
Hsu CR, Lin TL, Pan YJ, et al. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase[J]. PLoS One, 2013, 8(8): e70092.
doi: 10.1371/journal.pone.0070092 URL |
[96] |
Scholl D, Adhya S, Merril C. Escherichia coli K1’s capsule is a barrier to bacteriophage T7[J]. Appl Environ Microbiol, 2005, 71(8): 4872-4874.
doi: 10.1128/AEM.71.8.4872-4874.2005 URL |
[97] |
Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy[J]. Viruses, 2018, 10(7): 351.
doi: 10.3390/v10070351 URL |
[98] | Merabishvili M, Pirnay J-P, De Vos D. Guidelines to compose an ideal bacteriophage cocktail[J]. Bacteriophage Therapy, 2017, 1693: 99-110. |
[99] |
Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy[J]. Future Microbiol, 2013, 8(6): 769-783.
doi: 10.2217/fmb.13.47 pmid: 23701332 |
[100] |
Yang YH, Shen W, Zhong Q, et al. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa[J]. Front Microbiol, 2020, 11: 327.
doi: 10.3389/fmicb.2020.00327 URL |
[101] |
Tanji Y, Shimada T, Yoichi M, et al. Toward rational control of Escherichia coli O157: H7 by a phage cocktail[J]. Appl Microbiol Biotechnol, 2004, 64(2): 270-274.
pmid: 13680205 |
[102] |
Gu JM, Liu XH, Li Y, et al. A method for generation phage cocktail with great therapeutic potential[J]. PLoS One, 2012, 7(3): e31698.
doi: 10.1371/journal.pone.0031698 URL |
[103] |
Takeuchi I, Osada K, Azam AH, et al. The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal twort-like phages[J]. Appl Environ Microbiol, 2016, 82(19): 5763-5774.
doi: 10.1128/AEM.01385-16 URL |
[104] |
Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption[J]. FEMS Microbiol Lett, 2016, 363(4): fnw002.
doi: 10.1093/femsle/fnw002 URL |
[105] |
Fernandes S, São-José C. Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers[J]. Viruses, 2018, 10(8): 396.
doi: 10.3390/v10080396 URL |
[106] |
Stockdale SR, Mahony J, Courtin P, et al. The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization[J]. J Biol Chem, 2013, 288(8): 5581-5590.
doi: 10.1074/jbc.M112.444901 pmid: 23300085 |
[107] |
Stamereilers C, LeBlanc L, Yost D, et al. Comparative genomics of 9 novel Paenibacillus larvae bacteriophages[J]. Bacteriophage, 2016, 6(3): e1220349.
doi: 10.1080/21597081.2016.1220349 URL |
[108] |
Ceyssens PJ, Miroshnikov K, Mattheus W, et al. Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa[J]. Environ Microbiol, 2009, 11(11): 2874-2883.
doi: 10.1111/emi.2009.11.issue-11 URL |
[109] |
Garbe J, Wesche A, Bunk B, et al. Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions[J]. BMC Microbiol, 2010, 10: 301.
doi: 10.1186/1471-2180-10-301 |
[110] |
Li L, Shukla S, Meilleur F, et al. Neutron crystallographic studies of T4 lysozyme at cryogenic temperature[J]. Protein Sci, 2017, 26(10): 2098-2104.
doi: 10.1002/pro.3231 pmid: 28707382 |
[111] |
Oliveira H, Pinto G, Oliveira A, et al. Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies[J]. Sci Rep, 2017, 7: 46157.
doi: 10.1038/srep46157 pmid: 28387353 |
[112] |
Koraimann G. Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria[J]. Cell Mol Life Sci, 2003, 60(11): 2371-2388.
doi: 10.1007/s00018-003-3056-1 pmid: 14625683 |
[113] |
Majkowska-Skrobek G, Łątka A, Berisio R, et al. Capsule-targeting depolymerase, derived from Klebsiella KP36 phage, as a tool for the development of anti-virulent strategy[J]. Viruses, 2016, 8(12): 324.
doi: 10.3390/v8120324 URL |
[114] |
Gutiérrez D, Briers Y, Rodríguez-Rubio L, et al. Role of the pre-neck appendage protein(Dpo7)from phage vB_SepiS-phiIPLA7 as an anti-biofilm agent in staphylococcal species[J]. Front Microbiol, 2015, 6: 1315.
doi: 10.3389/fmicb.2015.01315 pmid: 26635776 |
[115] |
Knecht LE, Veljkovic M, Fieseler L. Diversity and function of phage encoded depolymerases[J]. Front Microbiol, 2020, 10: 2949.
doi: 10.3389/fmicb.2019.02949 URL |
[116] |
Born Y, Fieseler L, Klumpp J, et al. The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage[J]. Environ Microbiol, 2014, 16(7): 2168-2180.
doi: 10.1111/emi.2014.16.issue-7 URL |
[117] | Gontijo MTP, Jorge GP, Brocchi M. Current status of endolysin-based treatments against gram-negative bacteria[J]. Antibiotics(Basel), 2021, 10(10): 1143. |
[118] |
Seed KD, Yen M, Shapiro BJ, et al. Evolutionary consequences of intra-patient phage predation on microbial populations[J]. eLife, 2014, 3: e03497.
doi: 10.7554/eLife.03497 URL |
[119] |
Yen M, Cairns LS, Camilli A. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models[J]. Nat Commun, 2017, 8: 14187.
doi: 10.1038/ncomms14187 |
[120] |
Chan BK, Sistrom M, Wertz JE, et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa[J]. Sci Rep, 2016, 6: 26717.
doi: 10.1038/srep26717 |
[121] |
Filippov AA, Sergueev KV, He YX, et al. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice[J]. PLoS One, 2011, 6(9): e25486.
doi: 10.1371/journal.pone.0025486 URL |
[122] |
Capparelli R, Nocerino N, Lanzetta R, et al. Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice[J]. PLoS One, 2010, 5(7): e11720.
doi: 10.1371/journal.pone.0011720 URL |
[123] |
Gordillo Altamirano F, Forsyth JH, Patwa R, et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials[J]. Nat Microbiol, 2021, 6(2): 157-161.
doi: 10.1038/s41564-020-00830-7 pmid: 33432151 |
[124] |
Lin H, Paff ML, Molineux IJ, et al. Therapeutic application of phage capsule depolymerases against K1, K5, and K30 capsulated E. coli in mice[J]. Front Microbiol, 2017, 8: 2257.
doi: 10.3389/fmicb.2017.02257 URL |
[125] |
Majkowska-Skrobek G, Latka A, Berisio R, et al. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms[J]. Front Microbiol, 2018, 9: 2517.
doi: 10.3389/fmicb.2018.02517 pmid: 30405575 |
[126] |
Kim M, Ryu S. Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli[J]. Appl Environ Microbiol, 2011, 77(6): 2042-2050.
doi: 10.1128/AEM.02504-10 URL |
[127] |
Sampson BA, Gotschlich EC. Elimination of the vitamin B12 uptake or synthesis pathway does not diminish the virulence of Escherichia coli K1 or Salmonella typhimurium in three model systems[J]. Infect Immun, 1992, 60(9): 3518-3522.
doi: 10.1128/iai.60.9.3518-3522.1992 pmid: 1500158 |
[128] | Schooley RT, Biswas B, Gill JJ, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection[J]. Antimicrob Agents Chemother, 2017, 61(10): e00954-e00917. |
[129] |
Philipson CW, Voegtly LJ, Lueder MR, et al. Characterizing phage genomes for therapeutic applications[J]. Viruses, 2018, 10(4): 188.
doi: 10.3390/v10040188 URL |
[130] |
Leite DMC, Brochet X, Resch G, et al. Computational prediction of inter-species relationships through omics data analysis and machine learning[J]. BMC Bioinform, 2018, 19(S14): 420.
doi: 10.1186/s12859-018-2388-7 |
[1] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[2] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[3] | CUI Xue-qiang, HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin. SNP Markers Development and Genetic Relationship Analysis of Dendrobium Germplasms Using SLAF-seq Technology [J]. Biotechnology Bulletin, 2023, 39(6): 141-148. |
[4] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[5] | ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants [J]. Biotechnology Bulletin, 2023, 39(2): 51-62. |
[6] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[7] | SHI Cheng-long, WANG Xi-wu, LI An-qi, QIAN Sen-he, WANG Zhou, ZHAO Shi-guang, LIU Yan, XUE Zheng-lian. Effect of ε-Polylysine on the Cell Structure and Biofilm Formation of Cronobacter sakazakii [J]. Biotechnology Bulletin, 2022, 38(9): 147-157. |
[8] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[9] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[10] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[11] | WANG Xiao-fang, WAN Jin-xin, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Succession of Microbial Communities During Livestock Manure Composting [J]. Biotechnology Bulletin, 2022, 38(5): 13-21. |
[12] | LI Yang, ZHANG Xiao-tian, PIAO Jing-zi, ZHOU Ru-jun, LI Zi-bo, GUAN Hai-wen. Cloning and Bioinformatics Analysis of Blue-light Receptor EaWC 1 Gene in Elsinoë arachidis [J]. Biotechnology Bulletin, 2022, 38(5): 93-99. |
[13] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[14] | ZHANG Guo-ning, FENG Jing-xian, YANG Ying-bo, CHEN Wan-sheng, XIAO Ying. Application of Cyclodextrin Glucosyltransferase in the Glycosylation Modification of Natural Products [J]. Biotechnology Bulletin, 2022, 38(3): 246-255. |
[15] | ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(12): 184-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||