Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (9): 23-29.doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.003
• Review • Previous Articles Next Articles
Cao Kai, Li Yuanting, An Dengdi, Zhang Rui
Received:
2014-12-24
Online:
2015-09-15
Published:
2015-09-16
Cao Kai, Li Yuanting, An Dengdi, Zhang Rui. Research Progress on Effects of Endophytes on Plant Drought Resistance[J]. Biotechnology Bulletin, 2015, 31(9): 23-29.
[1]李能章, 彭远义. 植物内生菌研究进展[J]. 生物技术, 2004, 14(2):69-71. [2] Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxo-myces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993, 260(5105):214-216. [3]钮旭光, 韩梅, 何随成. 内生真菌对植物抗旱性的影响[J]. 生物技术, 2006, 16(3):93-95. [4]Azevedo JL, Maccheroni JW, Pereira JO, et al. Endophytic microorg-anisms:A review on insect control and recent advances on tropical plants[J]. Journal of Horticultural Science & Biotechnology, 2000, 3(1):40-65. [5]郭良栋. 内生真菌研究进展[J]. 菌物系统, 2001, 20(1):148-152. [6]曹理想, 周世宁. 植物内生放线菌研究[J]. 微生物学通报, 2004, 31(4):93-96. [7]马福欢. 植物内生真菌的研究概论[J]. 广西农学报, 2013, 28(2):50-53. [8]王志伟, 纪燕玲, 陈永敢. 禾本科植物内生真菌及其在农业上的应用潜力[J]. 南京农业大学学报, 2011, 34:144-154. [9]易晓华. 植物内生真菌多样性研究进展[J]. 安徽农业科学, 2009(28):13468-13469. [10]郝晓娟. 植物内生菌[M]. 北京:中国农业科学技术出版社, 2010:1-40. [11]韩继刚, 宋未. 植物内生细菌研究进展及其应用潜力[J]. 自然科学进展, 2004, 14(4):374-379. [12]林玲, 乔勇升, 顾本康, 等. 植物内生细菌及其生物防治植物病害的研究进展[J]. 江苏农业学报, 2008, 24(6):969-974. [13]Saarcchi M, Sardi P. Growth promoter streptomyces employedin seed bacterization institute of plant pathology[M]. Milano, Italy, 1992:45-87. [14]Evtushenko LI, Akimov VN, Dobritsa SV, et al. A new species of actinomycete Amycolata alni[J]. International Journal of Systematic Bacteriology, 1989, 39(1):72-77. [15]刘淑芬, 韩宝坤. 植物内生菌研究综述[J]. 邯郸农业高等专科学校学报, 2000, 17(2):15-20. [16] 曹理想, 田新莉, 周世宁. 香蕉内生真菌、放线菌类群分析[J]. 中山大学学报:自然科学版, 2003, 42(2):70-73. [17]张姝. 植物内生放线菌Fq24的分离筛选及生物活性初步研究[D]. 晋中:山西农业大学, 2005. [18]徐丽华, 李文均, 刘志恒, 等. 放线菌系统学—原理、方法及实践[M]. 北京:科学出版社, 2007:53-68. [19]杨颖, 陈华红, 徐丽华. 植物内生放线菌多样性研究[J]. 云南大学学报:自然科学版, 2008, 30(S1):403-405. [20]李广敏, 唐连顺, 商振清, 等. 渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J]. 河北农业大学学报, 1994, 17(2):1-5. [21]朱抗申, 黄丕生. 土壤水分胁迫与水稻活性氧代谢[J]. 南京农业大学学报, 1994, 17(2):7-11. [22]李娇, 张宝龙, 赵颖, 等. 内生菌对提高植物抗盐碱的研究进展[J]. 生物技术通报, 2014(4):14-18. [23]Saravanakumar D, Kavino M, Raguchander T, et al. Plant growth promoting bacteria enhance water stress resistance in green gram plants[J]. Acta Physiologiae Plantarum, 2011, 33:203-209. [24]Vardharajula S, Ali SZ, Grover M, et al. Drought-tolerant plant growth promoting Bacillus spp. :effect on growth, osmolytes, and antioxidant status of maize under drought stress[J]. Journal of Plant Interactions, 2011, 6:1-14. [25] Armada E, Roldán A, Azcon R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil[J]. Advances in Microbial Ecology, 2014, 67:410-420. [26]Bae HH, Sicher RC, Kim MS, et al. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao[J]. Journal of Experimental Botany, 2009, 60(11):3279-3295. [27]Sun C, Johnson JM, Cai DG, et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein[J]. Journal of Plant Physiology, 2010, 167:1009-1017. [28]Shukla N, Awasthi RP, Rawat L, et al. Biochemical and physiolog-ical responses of rice(Oryza sativa L. )as influenced by Trichod-erma harzianum under drought stress[J]. Plant Physiology and Biochemistry, 2012, 54:78-88. [29]Hamilton CE, Bauerle TL. A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought[J]. Fungal Diversity, 2012, 54:39-49. [30]Khan AL, Waqas M, Hamayun M, et al. Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation[J]. BMC Microbiology, 2013(13):51. [31]Yang T, Ma S, Dai CC. Drought degree constrains the beneficial effects of a fungal endophyte on Atractylodes lancea[J]. Journal of Applied Microbiology, 2014, 117(5):1435-1449. [32]Mastouri F, Bj?rkman T, Harman GE. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings[J]. Phytopathology, 2010, 100(11):1213-1221. [33] Timmusk S, Wagner EGH. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abiotic stress responses[J]. Molecular Plant-Microbe Interactions, 1999, 12(11):951-959. [34]Wang YQ, Ohara Y, Nakayashiki H, et al. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2005, 18(5):385-396. [35]Sherameti I, Tripathi S, Varma A, et al. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves[J]. Molecular Plant-Microbe Interactions, 2008, 21(6):799-807. [36]Arshad M, Shaharoona B, Mahmood T. Inoculation with Pseudomonas spp. containing acc-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of Pea(Pisum sativum L. )[J]. Pedosphere, 2008, 18(5):611-620. [37]Sandhya V, Ali SKZ, Grover M, et al. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology and Fertility Soils, 2009, 46:17-26. [38]Naveed M, Hussain MB, Zahir ZA, et al. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN[J]. Plant Growth Regulation, 2014, 73(2):121-131. [39]Amellal N, Burtin G, Bartoli F, et al. Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation[J]. Applied and Environmental Microbiology, 1998, 64(10):3740-3747. [40]Saia S, Amato G, Frenda AS, et al. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of Berseem clover plants subjected to water stress[J]. PLoS One, 2014, 9(3):e90738. [41]Vázquez-de-Aldana BR, García-Ciudad A, García-Criado B, et al. Fungal endophyte(Epichlo? festucae)alters the nutrient content of festuca rubra regardless of water availability[J]. PLoS One, 2013, 8(12):e84539. [42]Oberhofer M, Güsewell S, Leuchtmann A. Effects of natural hybrid and non-hybrid Epichlo? endophytes on the response of Hordelymus europaeus to drought stress[J]. New Phytologist, 2014, 201:242-253. [43]Yandigeri MS, Meena KK, Singh D, et al. Drought-tolerant endophytic actinobacteria promote growth of wheat(Triticum aestivum)under water stress conditions[J]. Plant Growth Regulution, 2012, 68:411-420. [44]Figueiredo MVB, Burity HA, Mart?nez CR, et al. Alleviation of drought stress in the common bean(Phaseolus vulgaris L. )by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici[J]. Applied Soil Ecology, 2008(40):182-188. [45]Waqas M, Khan AL, Kamran M, et al. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress[J]. Molecules, 2012(17):10754-10773. [46]Khan AL, Hamayun M, Ahmad N, et al. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses[J]. Physiologia Plantarum, 2011, 143(4):329-343. [47]Forchetti G, Masciarelli O, Izaguirre MJ, et al. Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi[J]. Current Microbiology, 2010(61):485-493. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[4] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[5] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[6] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[7] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[8] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[9] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
[10] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[11] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[12] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[13] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[14] | REN Si-yu, JIANG Cong-yi, YU Tao, KANG Rui, JIANG Xiao-bing. Role of agr System in the Antimicrobial Resistance and Biofilm Formation of Listeria monocytogenes [J]. Biotechnology Bulletin, 2023, 39(2): 254-262. |
[15] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||