[1]何璐, 虞泓, 范源洪, 等. 麻疯树(Jatropha curcas L. )植物学研究进展[J]. 长江流域资源与环境, 2010, 19:120-127. [2]曾觉民. 可大力发展的生物质能源植物-膏桐[J]. 云南林业, 2006, 27:21-22. [3]陈冀胜, 郑硕. 中国有毒植物[M]. 北京:科学出版社, 1987:258. [4]Lin J, Zhou X, Tang KX, et al. A survey of the studies on the resources of Jatropha curcas L. [J]. J Trop Subtrop Bot, 2004, 12:285-290. [5]Silverstone AL, Sun TP. Gibberellins and green revolution[J]. Trends Plant Sc, 2000, 5:1-2. [6]王伟, 朱平, 程克棣. 植物赤霉素生物合成和信号传导的分子生物学[J]. 植物学通报, 2002, 19:137-149. [7]Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle[J]. Plant J, 2008, 53:488-504. [8]武晶, 孔秀英, 高丽峰, 等. 小麦TaGA20ox2基因的克隆及分析[J]. 中国农业科学, 2009, 42:3405-3412. [9]鲍晓兰, 杨凯, 冯永庆, 等. 板栗GA20-氧化酶基因的克隆及序列分析[J]. 北京农学院学报, 2009, 24:5-8. [10]吴建明, 李杨瑞, 王爱勤, 等. 赤霉素诱导甘蔗GA20-Oxidase基因实时荧光定量PCR分析[J]. 分子植物育种, 2009, 7:922-927. [11] Wang HB, Zou ZR, Wang SS, et al. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. [J]. PLoS ONE, 2013, 12:e82817. [12]Wang HB, Zou ZR, Wang SS, et al. Deep sequencing-based transcriptome analysis of the oil-bearing plant Physic Nut(Jatropha curcas L. )under cold stress[J]. Plant Omics Journal, 2014, 7:178-187. [13]李忠光, 龚明. 不同化学消毒剂对小桐子种子萌发和幼苗生长的影响[J]. 种子, 2010, 30:4-7, 12. [14]Aravind L, Koonin EV. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases[J]. Genome Biol, 2001, 2:research0007. 1-research0007. 8. [15]McDonough MA, Li V, Flashman E, et al. Cellular oxygen sensing:Crystal structure of hypoxia-inducible factor prolyl hydroxylase(PHD2)[J]. Proc Natl Acad Sci USA, 2006, 103:9814-9819. [16]Carolis E, Deluca V. 2-oxoglutarate dependent dioxygenase and related enzymes:biochemical characterization[J]. Phytochemistry, 1994, 36:1093-1107. [17]Schofield CJ, Zhang ZH. Sturctural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes[J]. Curr Opin Str Bio, 1999, 9:722-731. [18]Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle[J]. Plant J, 2008, 53:488-504. [19]Laura H, Andres GL, Jose LGM. Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizocit range[J]. Tree Physiol, 2009, 29:569-577. [20]刘文超, 王东浩, 王喆之, 等. 丹参2-酮戊二酸依赖性双加氧酶基因克隆及表达分析[J]. 西北植物学报, 2012, 32:1289-1294. [21] Goda H, Sawa S, Asami T, et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis[J]. Plant Physiol, 2004, 134:1555-1573. [22] Frigerio M, Aladi D, Perze-Gomez J, et al. Transcriptional regulatino of gibberellin metabolism genes by auxin signaling in Arabidopsis[J]. Plant Physiol, 2006, 143:553-563. [23] Son O, Hur YS, Kim YK, et al. ATHB12, an ABA-inducible homeodomain-leucine zipper(HD-Zip)protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20 oxidase gene[J]. Plant Cell Physiol, 2010, 51:1537-1547. [24]Fagoaga C, Tadeo FR, Iglesias DJ, et al. Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture[J]. J Exp Bot, 2007, 58:1407-1420. [25]Niki T, Nishijima T, Nakayama M, et al. Production of dwarf lettuce by overexpressing a pumpkin gibberellin 20-oxidase gene[J]. Plant Physiol, 2001, 126:965-972. [26]Vidal AM, Ben-Cheikh W, Talon M, et al. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid[J]. Planta, 2003, 217:442-448. |