[1] 高翼之. DNA双螺旋模型的建立——基因的物质本性[J]. 遗传, 2002, 24(6):691-694. [2]Qiu J, Liu J, Chen S, et al. Role of hairpin-quadruplex dna secondary structural conversion in the promoter of hnRNP K in gene transcriptional regulation[J]. Org Lett, 2015, 17(18):4584-4587. [3]Bevilacqua PC, Blose JM. Structures, kinetics, thermodynamics, and biological functions of RNA hairpins[J]. Annu Rev Phys Chem, 2008, 59:79-103. [4]Chen J, Poddar NK, Tauzin LJ, et al. Single-molecule FRET studies of HIV TAR-DNA hairpin unfolding dynamics[J]. J Phys Chem B, 2014, 118(42):12130-12139. [5]Coufal J, Jagelská EB, Liao JC, et al. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure[J]. Biochem Biophys Res Commun, 2013, 441(1):83-88. [6]Li D, Lv B, Zhang H, et al. Positive supercoiling affiliated with nucleosome formation repairs non-B DNA structures[J]. Chem Commun(Camb), 2014, 50(73):10641-10644. [7]赵宏宇, 蔡禄, 赵秀娟, 等. 化学药物对与人遗传病相关的DNA重复序列不稳定性的影响[J]. 生物技术通报, 2010(11):153-156, 161. [8]García-López A, Llamusí B, Orzáez M, et al. In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models[J]. Proc Natl Acad Sci USA, 2011, 108(29):11866-11871. [9]Pushechnikov A, Lee MM, Childs-Disney JL, et al. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease:application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3[J]. J Am Chem Soc, 2009, 131(28):9767-9779. [10]Wadkins RM, Vladu B, Tung CS, et al. Actinomycin D binds to metastable hairpins in single-stranded DNA[J]. Biochemistry, 1998, 37(34):11915-11923. [11]Wadkins RM, Tung CS, et al. The role of the loop in binding of an actinomycin D analog to hairpins formed by single-stranded DNA[J]. Arch Biochem Biophys, 2000, 384(1):199-203. [12]Jagelská EB, Pivonková H, Fojta M, et al. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets[J]. Biochem Biophys Res Commun, 2010, 391(3):1409-1414. [13]Shlyakhtenko LS, Hsieh P, et al. A cruciform structural transition provides a molecular switch for chromosome structure and dynamics[J]. J Mol Biol, 2000, 296(5):1169-1173. [14]Brázda V, Laister RC, Jagelská EB, et al. Cruciform structures are a common DNA feature important for regulating biological processes[J]. BMC Mol Biol, 2011, 12:33. [15]Yahyaoui W, Callejo M, Price GB, et al. Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast[J]. BMC Mol Biol, 2007, 8:27. [16]Zannis-Hadjopoulos M, Yahyaoui W, Callejo M, et al. 14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication[J]. Trends Biochem Sci, 2008, 33(1):44-50. [17]Hilton S, Winstanley D. Identification and functional analysis of the origins of DNA replication in the Cydia pomonella granulovirus genome[J]. J Gen Virol, 2007, 88(Pt 5):1496-1504. [18]Kim EL, Peng H, Esparza FM, et al. Cruciform-extruding regulatory element controls cell-specific activity of the tyrosine hydroxylase gene promoter[J]. Nucleic Acids Res, 1998, 26(7):1793-1800. [19]Horwitz MS. Transcription regulation in vitro by an E. coli promoter containing a DNA cruciform in the ‘-35’ region[J]. Nucleic Acids Res, 1989, 17(14):5537-5545. [20]Hanke JH, Hambor JE, Kavathas P, et al. Repetitive Alu elements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer[J]. J Mol Biol, 1995, 246(1):63-73. [21]Caffarelli E, Leoni L, Sampaolese B, et al. Persistence of cruciform structure and preferential location of nucleosomes on some regions of pBR322 and ColE 1 DNAs[J]. Eur J Biochem, 1986, 156(2):335-342. [22]Kato M, Hokabe S, Itakura S, et al. Interarm interaction of DNA cruciform forming at a short inverted repeat sequence[J]. Biophys J, 2003, 85(1):402-408. [23]张来斌, 任廷琦. 扩环荧光碱基类似物x-腺嘌呤分子基态和激发态性质的理论研究[J]. 物理学报, 2013, 10:353-359. [24]Bhavsar YP, Reilly SM, Wadkins RM. Evaluation of fluorescent analogs of deoxycytidine for monitoring DNA transitions from duplex to functional structures[J]. J Nucleic Acids, 2011, 2011:986820. [25]Tinsley RA, Walter NG. Pyrrolo-C as a fluorescent probe for monitoring RNA secondary structure formation[J]. RNA, 2006, 12(3):522-529. [26]Brázda V, Laister RC, Jagelská EB, et al. Cruciform structures are a common DNA feature important for regulating biological processes[J]. BMC Mol Biol, 2011, 12:33. [27] Stefanovsky VY, Moss T. The cruciform DNA mobility shift assay:A tool to study proteins that recognize bent DNA[J]. Methods Mol Biol, 2015, 1334:195-203. [28]Brázda V, Jagelská EB, Liao JC, et al. The central region of BRCA1 binds preferentially to supercoiled DNA[J]. J Biomol Struct Dyn, 2009, 27(1):97-104. [29]Degtyareva N, Subramanian D, Griffith JD. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases[J]. J Biol Chem, 2001, 276(12):8778-8784. [30]Jagelska EB, Pivonková H, Fojta M, et al. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets[J]. Biochem Biophys Res Commun, 2010, 391(3):1409-1414. [31]Zannis-Hadjopoulos M, Sibani S, Price GB. Eucaryotic replication origin binding proteins[J]. Front Biosci, 2004, 9:2133-2143. [32]Kowalski D, Natale DA, Eddy MJ, et al. Stable DNA unwinding, not “breathing, ” accounts for single-strand-specific nuclease hypersensitivity of specific A+T-rich sequences[J]. Proc Natl Acad Sci U S A, 1988, 85(24):9464-9468. |