[1] Rodríguez-Angeles G. Principal characteristics and diagnosis of the pathogenic groups of Escherichia coli[J]. Salud Publica de Mexico, 2001, 44(5):464-475. [2] Riley LW, Remis RS, Helgerson SD, et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype[J]. New England Journal of Medicine, 1983, 308(12):681-685. [3] 王燕, 谢贵林, 杜琳. 大肠杆菌O157∶H7感染流行概况[J]. 微生物学免疫学进展, 2008, 1:51-58. [4] 汪华, 景怀琦, 李红卫, 等. 江苏省淮北地区肠出血性大肠埃希菌O157:H7感染性腹泻并发急性肾衰的研究[J]. 中华流行病学杂志, 2004, 11:24-26. [5] 徐进, 庞璐. 食品安全微生物学指示菌国内外标准应用的比较分析[J]. 中国食品卫生杂志, 2011, 5:472-477. [6] 黄介枚. 国外大肠杆菌O157感染的爆发流行近况与防治策略[J]. 广东卫生防疫, 1997, 1:89-92. [7] 张桃香. 中国东部地带性土壤中大肠杆菌O157:H7存活和吸附机制的研究[D]. 杭州:浙江大学, 2014. [8] Gagliardi JV, Karns JS. Leaching of Escherichia coli O157:H7 in diverse soils under various agricultural management practices[J]. Applied and Environmental Microbiology, 2000, 66(3):877-883. [9] 周淑玉, 王俊起, 王京京. 北京污灌区土壤的细菌污染及其存活时间的实验研究[J]. 卫生研究, 1987, 2:17-20. [10] 朱奇, 陈彦, 许伟. 聊城市春季蔬菓生物污染的初步调查[J]. 山东师大学报:自然科学版, 2000, 15(2):186-189. [11] 叶小梅, 常志州, 陈欣, 等. 畜禽养殖场排放物病原微生物危险性调查[J]. 生态与农村环境学报, 2007, 2:66-70. [12] 蒋磊, 周明旭, 夏芃芃, 等. 产肠毒素大肠杆菌感染的分子致病机制[J]. 中国兽医学报, 2014, 9:1551-1560. [13] Petri WA, Miller M, Binder HJ, et al. Enteric infections, diarrhea, and their impact on function and development[J]. The Journal of Clinical Investigation, 2008, 118(4):1277-1290. [14] Kaper JB, Nataro JP, Mobley HL, et al. Pathogenic Escherichia coli[J]. Nature Reviews Microbiology, 2004, 22:123-140. [15] 朱蓓. 肠出血性大肠杆菌感染的流行病学及临床医学资料概述[J]. 解放军预防医学杂志, 2011, 4:309-311. [16] 李惠民, 骆金芝. 肠聚集性大肠杆菌腹泻的研究进展[J]. 国外医学(儿科学分册), 2000, 4:207-209. [17] 安微, 张秀英, 李蕊, 等. 致病性大肠杆菌毒力因子和耐药性研究进展[J]. 畜牧与兽医, 2013, 8:106-110. [18] Ojo OE, Ajuwape ATP, Otesile EB, et al. Potentially zoonotic shiga toxin-producing Escherichia coli serogroups in the faeces and meat of food-producing animals in Ibadan, Nigeria[J]. International Journal of Food Microbiology, 2010, 142(1):214-221. [19] Soufi L, Sáenz Y, Vinué L, et al. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons[J]. International Journal of Food Microbiology, 2010, 144(3):497-502. [20] Ewers C, Antão EM, Diehl I, et al. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential[J]. Applied and Environmental Microbiology, 2009, 75(1):184-192. [21] de Jong A, Bywater R, Butty P, et al. A pan-European survey of antimicrobial susceptibility towards human-use antimicrobial drugs among zoonotic and commensal enteric bacteria isolated from healthy food-producing animals[J]. Journal of Antimicrobial Chemotherapy, 2009, 63(4):733-744. [22] 严亚贤, 华修国. 大肠杆菌O157和其它产志贺毒素大肠杆菌的毒力因子-黏附素[J]. 中国预防兽医学报, 2002, 6:81-84. [23] Gyles CL, Fairbrother JM. Pathogenesis of bacterial infections in animals[M]. USA:Wiley-Blackwell, 2010. [24] Bianchi ATJ, Scholten JW, Van ZAM, et al. Parenteral vaccination of mice and piglets with F4+ Escherichia coli suppresses the enteric anti-F4 response upon oral infection[J]. Vaccine, 1996, 14(3):199-206. [25] Harrington SM, Dudley EG, Nataro JP. Pathogenesis of enteroaggr-egative Escherichia coli infection[J]. FEMS Microbiology Lett-ers, 2006, 254(1):12-18. [26] Bardiau M, Szalo M, Mainil JG. Initial adherence of EPEC, EHEC and VTEC to host cells[J]. Veterinary Research, 2010, 41(5):57. [27] Devriendt B, Stuyven E, Verdonck F, et al. Enterotoxigenic Escherichia coli(K88)induce prionflammatory responses in porcine intestinal epithelial cells[J]. Developmental and Comparative Immunology, 2010, 34(11):1175-1182. [28] Piérard D, De GH, Haesebrouck F, et al. O157:H7 and O104:H4 Vero/Shiga toxin-producing Escherichia coli outbreaks:respective role of cattle and humans[J]. Veterinary Research, 2012, 43(1):1. [29] Scheutz F, Nielsen EM, Frimodt MJ, et al. Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011[J]. Euro Surveill, 2011, 16(24):19889. [30] Jansson L, Tobias J, Lebens M, et al. The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Escherichia coli is a glycosphingolipid binding protein[J]. Infection and Immunity, 2006, 74(6):3488-3497. [31] Hacker J, Blum-Oehler G, Mühldorfer I, et al. Pathogenicity islands of virulent bacteria:structure, function and impact on microbial evolution[J]. Molecular Microbiology, 1997, 23(6):1089-1097. [32] McDaniel TK, Jarvis KG, Donnenberg MS, et al. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens[J]. Proceedings of the National Academy of Sciences, 1995, 92(5):1664-1668. [33] Marchès O, Nougayrède JP, Boullier S, et al. Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2[J]. Infection and Immunity, 2000, 68(4):2171-2182. [34] Ge B, Zhao S, Hall R, et al. A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli[J]. Microbes and Infection, 2002, 4(3):285-290. [35] Galikowska E, Kunikowska D, Tokarska-Pietrzak E, et al. Specific detection of Salmonella enterica and Escherichia coli strains by using ELISA with bacteriophages as recognition agents[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2011, 30(9):1067-1073. [36] Park J, Park S, Kim YK. Multiplex detection of pathogens using an immunochromatographic assay strip[J]. BioChip Journal, 2010, 4(4):305-312. [37] Yonekita T, Fujimura T, Morishita N, et al. Simple, rapid, and reli-able detection of Escherichia coli O26 using immunochromatogr-aphy[J]. Journal of Food Protection, 2013, 76(5):748-754. [38] Xi C, Xiong QR, Xiong YH, et al. Establishing of a method combined immunomagnetic separation with colloidal gold lateral flow assay and its application in rapid detection of Escherichia coli O157:H7[J]. Chinese Journal of Analytical Chemistry, 2013, 41(12):1812-1816. [39] Mitchell KA, Chua B, Son A. Development of first generation in-situ pathogen detection system(Gen1-IPDS)based on NanoGene assay for near real time E. coli O157∶H7 detection[J]. Biosensors and Bioelectronics, 2014, 54:229-236. [40] Sanvicens N, Pascual N, Fernández-Argüelles MT, et al. Quantum dot-based array for sensitive detection of Escherichia coli[J]. Analytical and Bioanalytical Chemistry, 2011, 399(8):2755-2762. [41] Sangdee A, Natphosuk S, Srisathan A, et al. Development of SCAR primers based on a repetitive DNA fingerprint for Escherichia coli detection[J]. Journal of Microbiology, 2013, 51(1):31-35. [42] Wang Y, Zhao P, Zhang H, et al. A simple and rapid real-time PCR assay for the detection of Shigella and Escherichia coli species in raw milk[J]. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2013, 8(4):313-319. [43] Kim YJ, Kim JG, Oh SW. Rapid detection of Escherichia coli O157∶H7 in fresh-cut cabbage by real-time polymerase chain reaction[J]. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54(2):264-268. [44] Khatami F, Heidari M, Khatami M. Rapid Detection of Escherichia coli O157∶H7 by Fluorescent Amplification-Based Specific Hybridization(FLASH)PCR[J]. Iranian Red Crescent Medical Journal, 2012, 14(9):594. [45] Son I, Binet R, Maounounen LA, et al. Detection of five Shiga toxin-producing Escherichia coli genes with multiplex PCR[J]. Food Microbiology, 2014, 40:31-40. [46] Gordillo R, Rodríguez A, Werning ML, et al. Quantification of viable Escherichia coli O157∶H7 in meat products by duplex real-time PCR assays[J]. Meat Science, 2014, 96(2):964-970. [47] Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-timepyrophosphate[J]. Science, 1998, 281(5375):363-365. [48] 张得芳, 马秋月, 尹佟明, 等. 第三代测序技术及其应用[J]. 中国生物工程杂志, 2013, 33(5):125-131. [49] William H, Dadid S, Eerik H, et al. Denaturing HPLC for identifyingbacteria[J]. Bio Techniques, 2002, 33(8):386-391. [50] Suo B, He Y, Irwin P, et al. Optimization and application of a custom microarray for the detection and genotyping of E. coli O157:H7 in fresh meat samples[J]. Food Analytical Methods, 2013, 6(5):1477-1484. [51] Kim H, Kane MD, Kim S, et al. A molecular beacon DNA microarray system for rapid detection of E. coli O157∶H7 that eliminates the risk of a false negative signal[J]. Biosensors and Bioelectronics, 2007, 22(6):1041-1047. [52] Huang S, Xu Y, Yan X, et al. Development and application of a quantitative loop-mediated isothermal amplification method for detecting genetically modified maize MON863[J]. Journal of the Science of Food and Agriculture, 2015, 95(2):253-259. [53] 冯瑜菲. 猪水肿病大肠杆菌毒力因子鸡卵黄抗体制备及 Stx2基因 LAMP方法建立[D]. 哈尔滨:东北农业大学, 2011. [54] Wang DG, Huo GC. Rapid detection viable Escherichia Coli O157 in raw milk using Loop-Mediated Isothermal Amplification with aid of ethidiu monoazide[J]. Advanced Materials Research, 2012, 343:1217-1221. [55] Wang F, Yang Q, Qu Y, et al. Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of Shiga toxin-producing Escherichia coli in produce[J]. Applied and Environmental Microbiology, 2014, 80(8):2516-2525. [56] Sharples G J, Lloyd RG. A novel repeated sequence located in the intergenic regions of bacterial chromosomes[J]. Nucleic Acids Reserch, 1990, 18(22):6503-6508. [57] Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Reserch, 1991, 19(24):6823-6831. [58] 陈玉婷, 程楠, 许文涛. 食源性致病微生物的检测新技术[J]. 食品安全质量检测学报, 2015, 9:3405-3413. [59] Takayama K, Kjelleberg SA. The role of RNA stability during bacterial stress responses and starvation[J]. Environ Microbiol, 2000, 2(4):355-365 [60] Nogva HK, Drømtorp SM, Nissen H, et al. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5-nuclease PCR[J]. Biotechniques, 2003, 34(4):804-808. [61] Shi H, Xu W, Luo Y, et al. The effect of various environmental factors on the ethidium monazite and quantitative PCR method to detect viable bacteria[J]. Journal of Applied Microbiology, 2011, 111(5):1194-1204. [62] 于小龙, 徐进, 张昊, 等. PMA-PCR方法快速检测VBNC状态青枯菌[J]. 植物保护, 2016, 1:144-149. [63] 慈云祥, 臧凯赛, 高体玉. 几种微生物的红外光谱研究[J]. 高等学校化学学报, 2002, 23(6):1047-1049. [64] Siripatrawan U, Makino Y, Kawagoe Y, et al. Near infrared spectroscopy integrated with chemometrics for rapid detection of E. coli ATCC 25922 and E. coli K12[J]. Sensors and Actuators B:Chemical, 2010, 148(2):366-370. [65] Baeumner AJ, Cohen RN, Miksic V, et al. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water[J]. Biosensors and Bioelectronics, 2003, 18(4):405-413. [66] Varshney M, Li Y. Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium[J]. Talanta, 2008, 74(4):518-525. [67] Chang WH, Wang CH, Lin CL, et al. Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system[J]. Biosensors and Bioelectronics, 2015, 66:148-154. [68] Li Y, Afrasiabi R, Fathi F, et al. Impedance based detection of pathogenic E. coli O157∶H7 using a ferrocene-antimicrobial peptide modified biosensor[J]. Biosensors and Bioelectronics, 2014, 58:193-199. [69] Chan KY, Ye WW, Zhang Y, et al. Ultrasensitive detection of E. coli O157∶H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor[J]. Biosensors and Bioelectronics, 2013, 41:532-537. [70] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822. [71] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249(4968):505-510. [72] Jayasena SD. Aptamers:an emerging class of molecules that rival antibodies in diagnostics[J]. Clinical Chemistry, 1999, 45(9):1628-1650. |