[1] Peng Q, Lv X, Xu Q, et al. Isolation and structural characterization of the polysaccharide LRGP1 from Lycium ruthenicum[J]. Carbohydrate Polymers, 2012, 90:95-101. [2] 李艳, 孙萍, 鲁建疆, 等. 新疆黑枸杞多糖的提取及含量测定[J]. 数理医药学杂志, 2001, 14:164-165. [3] 李进, 瞿伟菁, 吕海英, 等. 黑果枸杞色素的提取和精制工艺研究[J]. 天然产物研究与开发, 2006, 18:650-654. [4] 孙奎. 柴达木盆地黑果枸杞色素最佳提取工艺研究[J]. 湖北农业科学, 2011, 50:2318-2320. [5] 李淑珍, 李进, 杨志江, 等. 大孔树脂分离纯化黑果枸杞总黄酮的研究[J]. 食品科学, 2009, 30:19. [6] 刘增根, 陶燕铎, 邵赟, 等. 柴达木枸杞和黑果枸杞中甜菜碱的测定[J]. 光谱实验室, 2012, 29:694. [7] 陈晨, 赵晓辉, 文怀秀, 等. 黑果枸杞的抗氧化成分分析及抗氧化能力测定[J]. 中国医院药学杂志, 2011, 31:1305-1306. [8] 贾琦珍, 陶大勇, 陈瑛, 等. 黑果枸杞色素对巨噬细胞的激活作用研究[J]. 中兽医医药杂志, 2008, 27:29-30. [9] 汪建红, 陈晓琴, 张蔚佼. 黑果枸杞果实多糖抗疲劳生物功效及其机制研究[J]. 食品科技, 2009:203-207. [10] 吕海英, 林丽, 等. 黑果枸杞叶总黄酮抗氧化和降血脂成分测定[J]. 新疆师范大学学报:自然科学版, 2012, 31:43-48. [11] 林丽, 李进, 吕海英, 等. 黑果枸杞花色苷对小鼠动脉粥样硬化的影响[J]. 中国中药杂志, 2012, 37:1460-1466. [12] 孙晓东, 李军, 施京红. 枸杞基因组 DNA 的提取与分析[J]. 陕西中医, 2004, 24:1129-1130. [13] Chen H, Zeng L, Yonezawa T, et al. Genetic population structure of the desert shrub species Lycium ruthenicum inferred from chloroplast dna[J]. Pakistan Journal of Botany, 2014, 46:2121-2130. [14] Liu Z, Shu Q, Wang L, et al. Genetic diversity of the endangered and medically important Lycium ruthenicum Murr. revealed by sequence-related amplified polymorphism(SRAP)markers[J]. Biochemical Systematics and Ecology, 2012, 45:86-97. [15] Chen H, Zhong Y. Microsatellite markers for Lycium ruthenicum(Solananeae)[J]. Molecular Biology Reports, 2014, 41:5545-5548. [16] Chen H, Feng Y, Wang L, et al. Transcriptome profiling of the UV-B stress response in the desert shrub Lycium ruthenicum[J]. Molecular Biology Reports, 2015, 42:639-649. [17] Zeng S, Wu M, Zou C, et al. Comparative analysis of anthocyanin biosynthesis during fruit development in two Lycium species[J]. Physiologia Plantarum, 2014, 150:505-516. [18] Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes[J]. Annual Review of Genetics, 2011, 45:41-59. [19] Giovannoni JJ. Genetic regulation of fruit development and ripening[J]. The Plant Cell, 2004, 16:S170-S180. [20] Grierson D, Kader AA. Fruit ripening and quality. // The Tomato Crop[M]. Atherton JG, et al. Chapman and Hall Ltd, USA, 1986:241-280. [21] Lombardo VA, Osorio S, Borsani J, et al. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage[J]. Plant Physiology, 2011, 157:1696-1710. [22] Zhang J, Ma H, Feng J, et al. Grape berry plasma membrane proteome analysis and its differential expression during ripening[J]. Journal of Experimental Botany, 2008, 59:2979-2990. [23] Wang Z, Zhao F, Zhao X, et al. Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L.[J]. Proteomics, 2012, 12:86-94. [24] Chai L, Li Y, Chen S, et al. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin[J]. Plant Science, 2014, 229:215-224. [25] 吕英民, 张大鹏. 果实发育过程中糖的积累[J]. 植物生理学通讯, 2000, 36:258-265. [26] Reid KE, Olsson N, Schlosser J, et al. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development[J]. BMC Plant Biology, 2006, 6:27. [27] Li R, Yu C, Li Y, et al. SOAP2:an improved ultrafast tool for short read alignment[J]. Bioinformatics, 2009, 25:1966-1967. [28] Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5:621-628. [29] Audic S, Claverie JM. The significance of digital gene expression profiles[J]. Genome Research, 1997, 7:986-995. [30] Xu H, Zhang Y, Guo X, et al. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway[J]. Journal of Bacteriology, 2004, 186(16):5400-5409. [31] 矫晓丽, 迟晓峰, 董琦, 等. 柴达木野生黑果枸杞营养成分分析[J]. 氨基酸和生物资源, 2011, 33:60-62. [32] Bonnefoy M, Laville M, et al. Effects of branched amino acids sup-plementation in malnourished elderly with catabolic status[J]. The Journal of Nutrition, Health & Aging, 2010, 14:579-584. [33] 张伟国, 郭燕风. 支链氨基酸生物合成及其代谢工程育种研究进展[J]. 食品与生物技术学报, 2014, 33:120-126. [34] Park JH, Lee KH, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation[J]. Proceedings of the National Academy of Sciences, 2007, 104:7797-7802. [35] Ruklisha M, Paegle L, Denina I. L-Valine biosynthesis during batch and fed-batch cultivations of Corynebacterium glutamicum:relationship between changes in bacterial growth rate and intracellular metabolism[J]. Process Biochemistry, 2007, 42:634-640. [36] Kalinowski J, Bathe B, Bartels D, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins[J]. Journal of Biotechnology, 2003, 104:5-25. [37] 郝宏蕾, 朱旭芬. 类异戊二烯的生物合成及调控[J]. 浙江大学学报:农业与生命科学版, 2002, 28:224-230. [38] 闫绍鹏, 杨瑞华, 冷淑娇, 等. 高通量测序技术及其在农业科学研究中的应用[J]. 中国农学通报, 2012, 28:171-176. |