[1] Yagi K, Nagatsu T, Nagatsu I, et al. Condensation product of ethylenediamine with noradrenaline or 3, 4-dihydroxymandelic acid[J]. Nature, 1960, 23(1):310-311. [2] 宋岩, 王恒国, 高洪杰, 等. 3, 4-二羟基扁桃酸的合成[J]. 化工科技, 2008, 16(6):43-45. [3] Rod F, Humphrey PR, Maureen MD, et al. Rang & Dale's pharmacology[M]. ISBN 0-443-06911-5, 2007. [4] Ley JP, Engelhart K, Bernhardt J, et al. 3, 4-Dihydroxymandelic acid, a noradrenalin metabolite with powerful antioxidative potential[J]. Agric Food Chem, 2002(50):5897-5902. [5] Bjørsvik HR, Liguori L, Minisci F, et al. High selectivity in the oxidation of mandelic acid derivatives and in O-methylation of protocatechualdehyde:new processes for synthesis of vanillin, iso-vanillin, and heliotropin[J]. Organic Process Research & Development, 2000, 4:534-543. [6] Kong SY, Oksik C, Lee JK, et al. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain[J]. Microbial Cell Factories, 2012(11):1-9. [7] Muñoz AJ, Hernández-Chávez G, Anda R, et al. Metabolic engine-ering of Escherichia coli for improving L-3, 4-dihydroxyphenylalanine(L-DOPA)synthesis from glucose[J]. Microbiol Biotechnol, 2011, 38:1845-1852. [8] Juminaga D, Baidoo EE, Redding-Johanson AM, et al. Modular engineering of L-tyrosine production in Escherichia coli[J]. Appl Environ Microbiol, 2012, 78:89-98. [9] Hubbard BK, Thomas MG, Walsh CT. Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics[J]. Chemistry & Biology, 2000, 12:931-942. [10] Tomasz B, Arianna B, Per EM. 4-Hydroxyphenylpyruvate dioxygenase:a hybrid density functional study of the catalytic reaction mechanism[J]. Biochemistry, 2004, 43:12331-12342. [11] Hojati Z, Milne C, Harvey B, et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor[J]. Chemistry & Biology, 2002, 11:1175-1187. [12] 叶玉成, 刘双平, 张梁, 等. 对羟基扁桃酸合酶基因的克隆表达及催化特性[J]. 微生物学通报, 2014, 41(1):8-16. [13] Pierre L, Agnes A, Comte A, et al. Hydroxytyrosol from tyrosol using hydroxyphenylacetic acid-induced bacterial cultures and evidence of the role of 4-HPA 3-hydroxylase[J]. Research in Microbiology, 2009, 160:757-766. [14] Lin Y, Yan Y. Biotechnological production of plant-specific hydroxylated phenylpropanoids[J]. Biotechnology and Bioengineering, 2014, 9(111):1895-1899. [15] Bai Y, Bi H, Zhuang Y, et al. Production of salidroside in metabolically engineered Escherichia coli[J]. Scientific Reports, 2014, 4:6640. [16] Bongaerts J, Krämer M, Müller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds[J]. Metabolic Engineering, 2001, 3:289-300. [17] Polen T, Kramer M, Wubbolts M, et al. The global gene expression response of Escherichia coli to L-phenylalanine[J]. Journal of Biotechnology, 2005, 115:221-237. [18] Liu S, Liu R, El-Rotail AMM, et al. Heterologous pathway for the production of L-phenylglycine from glucose by E. coli[J]. Biotechnology, 2014, 186:91-97. [19] Seiki K, Katsura I, Ogawa T, et al. Aromatic amino acid aminotransferase of Escherichia coli:nucleotide sequence of the tyrB gene[J]. Biochemical and Biophysical Research Communications, 1985, 133:134-139. |