[1] Challis GL, Hopwood DA. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Str-eptomyces species[J]. Proc Natl Acad Sci USA, 2003, 100(Suppl 2):14555-14561. [2] Hopwood DA. Therapeutic treasures from the deep[J]. Nat Chem Biol, 2007, 3(8):457-458. [3] Nodwell JR. Novel links between antibiotic resistance and antibiotic production[J]. J Bacteriol, 2007, 189(10):3683-3685. [4] Bentley SD, Chater KF, Cerdeño-Tárraga AM, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature, 2002, 417(6885):141-147. [5] Hwang KS, Kim HU, Charusanti P, et al. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites[J]. Biotechnol Adv, 2014, 32(2):255-268. [6] Gomez-Escribano JP, Song L, Fox DJ, et al. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145[J]. Chemical Science, 2012, 3:2716-2720. [7] Liu G, Chandra G, Tan H, et al. Molecular regulation of antibiotic biosynthesis in Streptomyces[J]. Microbiol Mol Biol Rev, 2013, 77(1):112-143. [8] Wang W, Shu D, Lu Y, et al. Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor[J]. FEMS Microbiol Lett, 2009, 294(2):150-156. [9] Kieser T, Bibb M, Buttner M, et al. Practical Streptomyces Genetics:a laboratory Manual[M]. Norwich:John Innes Foundation, 2000. [10] Gust B, Challis GL, Fowler K, et al. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin[J]. Proc Natl Acad Sci USA, 2003, 100:1541-1546. [11] Gregory MA, Till R, Smith MC. Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors[J]. Journal of Bacteriol, 2003, 185(17):5320-5323. [12] Gust B, Kieser T, Chater KF. Redireccted technology:PCR-targeting sysrem in Streptomyces coelicolor A3(2):a laboratory manual[M]. Norwich:John Innes Foundation, 2002. [13] Sambrook J, Russell D. Molecular Cloning:A Laboratory Manual[M]. New York:Cold Spring Harbor Laboratory Press, 2001. [14] Yu Z, Zhu H, Dang F, et al. Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Strepto-myces coelicolor[J]. Mol Microbiol, 2012, 85(3):535-556. [15] Hillerich B, Westpheling J. A new TetR family transcriptional regulator required for morphogenesis in Streptomyces coelicolor[J]. Journal of Bacteriol, 2008, 190(1):61-67. [16] Chater KF. Regulation of sporulation in Streptomyces coelicolor A3(2):A checkpoint multiplex?[J]. Current Opinion in Microbiology, 2001(4):667-673. [17] Keijser BJ, van Wezel GP, Canters GW, et al. The Ram-dependence of Streptomyces lividans difference is by bypassed by copper[J]. J Molecul Microbiol Biotechnol, 2014, 82(6):1093-1098. [18] Kim JM, Won HS, Kang SO. The C-terminal domain of the transcriptional regulator BldD from Streptomyces coelicolor A3(2)constitutes a novel fold of winged-helix domains[J]. Proteins, 2014, 82(6):1093-1098. [19] Bibb MJ, Domonkos A, Chandra G, et al. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σBldN and a cognate anti-sigma factor, RsbN[J]. Molecular Microbiology, 2012, 84(6):1033-1049. [20] Taguchi T, Itou K, Ebizuka Y, et al. Chemical characterisation of disruptants of the Streptomyces coelicolor A3(2)actVI genes involved in actinorhodin biosynthesis[J]. Journal of Antibiotics, 2000, 53(2):144-152. [21] Iqbal M, Mast Y, Amin R, et al. Extracting regulator activity profiles by integration of de novo motifs and expression data:characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor[J]. Nucleic Acids Res, 2012, 40(12):5227-5239. |