Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (4): 51-62.doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.007
• Orignal Article • Previous Articles Next Articles
CUI Hong-li1, CHEN Jun2, 3, HOU Yi-long1, WU Hai-ge1, QIN Song2
Received:
2016-07-28
Online:
2017-04-25
Published:
2017-04-25
CUI Hong-li, CHEN Jun, HOU Yi-long, WU Hai-ge, QIN Song. Research Progress on Blue-photoreceptors and Its Functions in Eukaryotic Microalgae[J]. Biotechnology Bulletin, 2017, 33(4): 51-62.
[1] Gould SB, Waller RF, Mcfadden GI. Plastid evolution[J]. Annual Review of Plant Biology, 2008, 59:491-517. [2] Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution[J]. Annual Review of Plant Biology, 2013, 64(4):583-607. [3] 范玉琴, 李德红. 植物的蓝光受体及其信号转导[J]. 激光生物学报, 2004, 13(4):314-320. [4] Cui HL, Yu XN, Wang Y, et al. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae[J]. Bmc Genomics, 2013, 14(1):135-143. [5] Fumio T, Daisuke Y, Mié I, et al. Aureochrome, a photoreceptor required for photomorphogenesis in stramenopiles[J]. Proceedings of the National Academy of Science, 2007, 104(49):19625-19630. [6] Kianianmomeni A, Hallmann A. Algal photoreceptors:in vivo functions and potential applications[J]. Planta, 2014, 239(1):1-26. [7] Chaves I, Pokorny R, Byrdin M, et al. The cryptochromes:blue light photoreceptors in plants and animals[J]. Annual Review of Plant Biology, 2011, 62:335. [8] 孙燕, 许志茹. 植物的蓝光受体[J]. 植物生理学报, 2008, 44(01):144-150. [9] Jean-Pierre B, Baldissera G, Armin D, et al. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1[J]. European Journal of Biochemistry, 2003, 270(14):2921-2928. [10] Yu X, Klejnot J, Zhao X, et al. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus[J]. Plant Cell, 2007, 19(10):3146-3156. [11] 常立, 文国琴. 植物蓝光受体研究进展[J]. 生物技术通讯, 2004, 15(2):169-171. [12] Wang H, Ma LG, Li JM, et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development[J]. Behavior Genetics, 2001, 294(5540):154-158. [13] Liu B, Zuo ZC, Liu HT, et al. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light[J]. Genes & Development, 2011, 25(10):1029-1034. [14] Zuo ZC, Liu HT, Liu B, et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis[J]. Current Biology, 2011, 21(10):841-847. [15] 李旭. 拟南芥蓝光受体隐花素CRY2光激发机理和功能的生化分析[D]. 长沙:湖南大学, 2012. [16] Ahmad M, Jarillo JA, Smirnova O, et al. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro[J]. Molecular Cell, 1998, 1(7):939-948. [17] 张云云. 拟南芥蓝光受体CRY2互作蛋白激酶的筛选及验证[D]. 长春:吉林大学, 2015. [18] Berrocal-Tito GM, Esquivel-Naranjo EU, Horwitz BA, et al. Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction[J]. Eukaryotic Cell, 2007, 6(9):1682-1692. [19] Bayram O, Biesemann C, Krappmann S, et al. More than a repair enzyme:Aspergillus nidulans photolyase-like CryA is a regulator of sexual development[J]. Molecular Biology of the Cell, 2008, 19(8):3254-3262. [20] Heijde M, Zabulon G, Corellou F, et al. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes[J]. Plant Cell & Environment, 2010, 33(10):1614-1626. [21] Yihua H, Richard B, Smith BS, et al. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity[J]. Proceedings of the National Academy of Sciences, 2006, 103(47):17701-17706. [22] Brudler R, Hitomi K, Daiyasu H, et al. Identification of a new cryptochrome class, structure, function, and evolution[J]. Molecular Cell, 2003, 11(1):59-67. [23] Dominik I, Ramona S, Joachim H, et al. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome[J]. Journal of Biological Chemistry, 2007, 282(30):21720-21728. [24] Dominik I, Richard P, Elena H, et al. Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy:the neutral radical state of flavoproteins[J]. Journal of Physical Chemistry B, 2010, 114(51):17155-17161. [25] Lariguet P, Dunand C. Plant photoreceptors:phylogenetic overview[J]. Journal of Molecular Evolution, 2005, 61(4):559-569. [26] Reisdorph NA, Small GD. The CPH1 Gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis[J]. Plant Physiology, 2004, 134(4):1546-1554. [27] Thomas L, Dominik I, Bernhard D, et al. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome[J]. Journal of the American Chemical Society, 2009, 131(40):14274-14280. [28] Benedikt B, Katja P, Meike S, et al. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii[J]. Plant Cell, 2012, 24(7):2992-3008. [29] Benedikt B, Nico M, Tilman K, et al. News about cryptochrome photoreceptors in algae[J]. Plant Signaling & Behavior, 2013, 8(2):1-4. [30] Asimgil H, Kavakli IH. Purification and characterization of five members of photolyase/cryptochrome family from Cyanidioschyzon merolae[J]. Plant Science, 2012, 185-186(4):190-198. [31] Juhas M, Zadow A, Spexard M, et al. A novel cryptochrome in the diatom Phaeodactylumtricornutum influences the regulation of light-harvesting protein levels[J]. Febs Journal, 2014, 281(9):2299-2311. [32] Oliveri P, Fortunato AE, Petrone L, et al. The Cryptochrome/Photolyase Family in aquatic organisms[J]. Marine Genomics, 2014, 14(1):23-37. [33] Chris B, Allen AE, Badger JH, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7219):239-244. [34] Depauw FA, Rogato A, Ribera d'Alcalá M, et al. Exploring the molecular basis of responses to light in marine diatoms[J]. Journal of Experimental Botany, 2012, 63(4):1575-1591. [35] Sacha C, Manuela M, Tomoko I, et al. Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity[J]. Embo Reports, 2009, 10(6):655-661. [36] Cock JM, Sterck L, Rouzé P, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae[J]. Nature, 2010, 465(7298):617-621. [37] Vieler A, Wu G, Tsai CH, et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779[J]. PLoS Genetics, 2012, 8(11):e1003064. [38] Brunelle SA, Starr HE, Sotka EE, et al. Characterization of a dinoflagellate cryptochrome blue-light receptor with a possible role incircadian control of the cell cycle1[J]. Journal of Phycology, 2007, 43(3):509-518. [39] Asimgil H, Kavakli IH. Purification and characterization of five members of photolyase/cryptochrome family from Cyanidioschyzon merolae[J]. Plant Science, 2012, s 185-186(4):190-198. [40] Ulrich K, Bui Quang M, Aba L, et al. Distribution and phylogeny of light-oxygen-voltage-blue-light-signaling proteins in the three kingdoms of life[J]. Journal of Bacteriology, 2009, 191(23):7234-7242. [41] Christie JM, Salomon M, Nozue K, et al. LOV(light, oxygen, or voltage)domains of the blue-light photoreceptor phototropin(nph1):binding sites for the chromophore flavin mononucleotide[J]. Proc Natl Acad Sci USA, 1999, 1999:8779-8783. [42] 乔新荣, 陈琼. 植物向光素信号通路中NPH3蛋白的研究进展[J]. 植物生理学报, 2015(6):829-834. [43] 乔新荣, 段鸿斌, 叶兆伟. 植物向光素受体与信号转导机制研究进展[J]. 生物技术通报, 2014(8):1-7. [44] Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch[J]. Science, 2003, 301(5639):1541-1545. [45] Corchnoy SB, Swartz TE, Lewis JW, et al. Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1[J]. Journal of Biological Chemistry, 2003, 278(2):724-731. [46] Briggs WR, Christie JM, Salomon M. Phototropins:a new family of flavin-binding blue light receptors in plants[J]. Antioxidants & Redox Signaling, 2001, 3(5):775-788. [47] Christie JM, Swartz TE, Bogomolni RA, et al. Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function[J]. Plant Journal, 2002, 32(2):205-219. [48] Salomon M, Christie JM, Knieb E, et al. Photochemical and mutational analysis of the FMN-binding domains of the plant bluelight receptor, phototropin[J]. Biochemistry, 2000, 39(31):9401-9410. [49] Hiroko K, Takeshi K, Steen C, et al. Responses of ferns to red light are mediated by an unconventional photoreceptor[J]. Nature, 2003, 421(6920):287-290. [50] Kennis JTM, Stokkum IHM, Van, Sean C, et al. The LOV2 domain of phototropin:A reversible photochromic switch[J]. Journal of the American Chemical Society, 2004, 126(14):4512-4513. [51] Christie JM. Phototropin blue-light receptors[J]. Annual Review of Plant Biology, 2007, 58(1):21-45. [52] Yuki T, Masayoshi N, Koji O, et al. Light-induced movement of the LOV2 domain in an Asp720Asn mutant LOV2-kinase fragment of Arabidopsis phototropin 2[J]. Biochemistry, 2011, 50(7):1174-1183. [53] Sullivan S, Thomson CE, Lamont DJ, et al. In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1[J]. Molecular Plant, 2008, 1(1):178-194. [54] Shin-Ichiro I, Toshinori K, Masaki M, et al. Blue light-induced autophosphorylation of phototropin is a primary step for signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(14):5626-5631. [55] Sullivan S, Petersen J, Blackwood L, et al. Functional characterization of Ostreococcus tauri phototropin[J]. New Phytologist, 2015, doi:10. 1111/nph. 13640. [56] Huang K, Merkle T, Beck CF. Isolation and characterization of a Chlamydomonas gene that encodes a putative blue-light photoreceptor of the phototropin family[J]. Physiologia Plantarum, 2002, 115(4):613-622. [57] Kasahara M;Swartz TE;Olney MA;et al. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii[J]. Plant Physiology, 2002, 129(2):762-773. [58] Huang K, Beck CF. Photoropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii[J]. Proceedings of the National Academy of Sciences, 2003, 100:762-73. [59] Chung-Soon I, Stephan E, Huang K, et al. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii[J]. Plant Journal, 2006, 48(1):1-16. [60] Christie JM. Phototropin blue-light receptors[J]. Annual Review of Plant Biology, 2007, 58(4):21-45. [61] Zorin B, Lu Y, Sizova I, et al. Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene[J]. Gene, 2009, 432(s 1-2):91-96. [62] Jessica T, Andre G, Jana S, et al. Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii[J]. Plant Cell, 2012, 24(11):4687-4702. [63] Berthold P, Tsunoda SP, Oliver P, et al. Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization[J]. Plant Cell, 2008, 20(6):1665-1677. [64] El-Batoul DT, Christie JM, Sophie SF, et al. A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus[J]. Plant Journal, 2011, 65(4):578-588. [65] Losi A, Gärtner W. The evolution of flavin-binding photoreceptors:an ancient chromophore serving trendy blue-light sensors[J]. Annual Review of Plant Biology, 2012, 63(3):49-72. [66] Losi A, Gärtner W. Old chromophores, new photoactivation paradi- gms, trendy applications:flavins in blue light-sensing photorece-ptors[J]. Photochemi Photobiol, 2011, 87(3):491-510. [67] Tseng TS, Frederickson MA, Briggs WR, et al. Light-activated bacterial LOV-domain histidine kinases[J]. Methods in Enzymology, 2010, 471:125-134. [68] Deng YY, Yao JT, Fu G, et al. Isolation, expression, and characterization of blue light receptor Aureochrome gene from Saccharina japonica(Laminariales, Phaeophyceae)[J]. Marine Biotechnology, 2013, 16(2):135-143. [69] Osamu H, Ken T, Kazunori Z, et al. Blue light-induced conformational changes in a light-regulated transcription factor, Aureochrome-1[J]. Plant & Cell Physiology, 2013, 54(1):93-106. [70] Herman E, Sachse M, Kroth PG, et al. Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum[J]. Biochemistry, 2013, 52(18):3094-3101. [71] Mitra D, Yang X, Moffat K. Crystal structures of aureochrome1 LOV suggest new design strategies for optogenetics[J]. Structure, 2012, 20(4):698-706. [72] 黄一江. 微拟球藻NgLACS和NgAUREO1基因的克隆表达与功能分析[D]. 泰安:山东农业大学, 2014. [73] Noriyuki S, Masamitsu W. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles:phototropin, ZTL/FKF1/LKP2 and aureochrome[J]. Plant & Cell Physiology, 2013, 54(1):8-23. [74] Huysman MJJ, Fortunato AE, Michiel M, et al. Aureochrome1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms(Phaeodactylum tricornutum)[J]. Plant Cell, 2013, 25(1):215-228. [75] Mié I, Fumio T, Hisayoshi N, et al. Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes[J]. Planta, 2009, 230(3):543-552. [76] Gaditana N, Radakovits O, Jinkerson RE, et al. Draft genome sequence and genetic transformation of the oleaginous alga[J]. Nature Communications, 2012, 3(2):686-698. |
[1] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[2] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[3] | ZHANG Guo-ning, FENG Jing-xian, YANG Ying-bo, CHEN Wan-sheng, XIAO Ying. Application of Cyclodextrin Glucosyltransferase in the Glycosylation Modification of Natural Products [J]. Biotechnology Bulletin, 2022, 38(3): 246-255. |
[4] | LI Tao, ZHAO Wei, YANG Bing-Jie, CHEN Zi-Shuo, WU Hua-lian, WU Hou-bo, XIANG Wen-zhou. Outdoor Cultivation Oil Extraction of the Salt-tolerant Microalga,Eustigmatos sp. [J]. Biotechnology Bulletin, 2020, 36(7): 130-138. |
[5] | ZHANG Jing-jie, LIU Shen-kun, TANG Tao, GE Bao-sheng, LI Run-zhi, CUI Hong-li. Preparation of Microalgae-derived Biological Stimulants and Its Application in Protected Agriculture [J]. Biotechnology Bulletin, 2020, 36(4): 164-174. |
[6] | YANG Bing-jie, XIANG Wen-zhou, JIN Xue-Jie, CHEN Zi-shuo, WANG Ling, WU Hou-bo. Isolation and Identification of an Algicidal Bacterium CBA02 and Its Algae-lysing Characteristics [J]. Biotechnology Bulletin, 2020, 36(11): 55-62. |
[7] | YANG Sheng-nan, LIU Na, SONG Dong-hui. Optimization of Chromium(VI)Removal by Mixture of Bacteria-microalgae and Determination of Chromium(VI)Reductase Activities [J]. Biotechnology Bulletin, 2019, 35(9): 83-92. |
[8] | LI Zhi, ZHOU Qiu-xiang, LI Qiu-ling, LIU Meng-ying, ZHOU Zhi-you, LI Han-guang. Overview on Efficient Methods for the Determination of Microalgae Lipid Content [J]. Biotechnology Bulletin, 2019, 35(12): 189-195. |
[9] | LI Tao, XU Jin, WU Hua-lian, WANG Ming, XIANG Wen-zhou. Effects of Nitrogen Concentration on the Growth,Lipid Accumulation and Fatty Acids Distribution of Oleaginous Chlorococcum sp. [J]. Biotechnology Bulletin, 2018, 34(5): 154-162. |
[10] | MA Hao-tian, LI Run-zhi, ZHANG Hong-jiang, HANG Wei, CUI Hong-li. Research Progress on the Treatment of Wastewater from Poultry and Livestock Breeding Based on the Microalgae Cultivation [J]. Biotechnology Bulletin, 2018, 34(11): 83-90. |
[11] | LI Jia-ying,LI Tao, TAN Li,WU Jia-yi ,XIANG Wen-zhou, LIU De-hai. Effects of Salinity on the Growth and Biochemical Properties of a Freshwater Algae Scenedesmus sp. [J]. Biotechnology Bulletin, 2017, 33(7): 155-161. |
[12] | YI Hua-Wei, TANG Xiao-Feng. Research Progress on the Prediction of Protein Stability Based on Amino Acid Sequence and Simulated Structure [J]. Biotechnology Bulletin, 2017, 33(4): 83-89. |
[13] | CHEN Cheng-hao, WU Jia-yi, TANG Ming-xing, LI Tao, WU Hua-lian, WANG Guang-hua, DAI Shi-kun, XIANG Wen-zhou. Evaluation on Growth and Biochemical Properties of Eight Strains of Marine Microalgae Nannochloris sp. [J]. Biotechnology Bulletin, 2016, 32(6): 231-237. |
[14] | WANG Yi-bin, MIAO Jin-lai, JIANG Ying-hui, LIU Fang-ming, ZHENG Zhou, LI Guang-you. Roles of Proline and Soluble Sugar in the Cold-adaptation of Antarctic Ice Microalgae [J]. Biotechnology Bulletin, 2016, 32(2): 198-202. |
[15] | WANG Yi-bin, ZHANG Ai-jun, LIU Fang-ming, ZHENG Zhou, MIAO Jin-lai. Advances in Studies on the Acclimation of Antarctic Ice Microalgae to Extreme Environments [J]. Biotechnology Bulletin, 2016, 32(10): 128-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||