[1] Subramaniyan M, Dani JA. Dopaminergic and cholinergic learning mechanisms in nicotine addiction[J]. Annals of the New York Academy of Sciences, 2015, 1349(1):46-63. [2] Prochaska JJ, Benowitz NL. The Past, present, and future of nicotine addiction therapy[J]. Annual Review of Medicine, 2015, 67(1):411-420. [3] Wong CC, Mill J, Fernandes C. Drugs and addiction:an introduction to epigenetics[J]. Addiction, 2011, 106(3):480-490. [4] Renthal W, Nestler EJ. Chromatin regulation in drug addiction and depression[J]. Dialogues in Clinical Neuroscience, 2009, 11(3):257-268. [5] Hwang YY, Li MD. Proteins differentially expressed in response to nicotine in five rat brain regions:Identification using a 2-DE/MS-based proteomics approach[J]. Proteomics, 2006, 6(10):3138-3153. [6] Yeom M, Shim I, Lee HJ, et al. Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats[J]. Biochem Biophys Res Commun, 2005, 326(2):321-328. [7] Hemby SE. Cocainomics:new insights into the molecular basis of cocaine addiction[J]. Journal of Neuroimmune Pharmacology, 2010, 5(1):70-82. [8] Bodzon-Kulakowska A, Suder P, Mak P, et al. Proteomic analysis of striatal neuronal cell cultures after morphine administration[J]. J Sep Sci, 2009, 32(8):1200-1210. [9] Benowitz NL. Nicotine addiction[J]. The New England Journal of Medicine, 2010, 362(24):311-631. [10] Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling[J]. Trends in Pharmacological Sciences, 2004, 25(6):317-324. [11] Kane JK, Konu Ö, Ma JZ, et al. Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain[J], Molecular Brain Research. 2004, 132(2):181-191. [12] Arora K, Cheng J, Nichols RA. Nicotinic acetylcholine receptors sensitize a MAPK-linked toxicity pathway on prolonged exposure to β-Amyloid[J]. Journal of Biological Chemistry, 2015, 290(35):21409-21420. [13] Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers[J]. Molecular Cancer Research, 2014, 12(1):14-23. [14] Tang K, Wu H, Mahata SK, et al. A crucial role for the mitogen-activated protein kinase pathway in nicotinic cholinergic signaling to secretory protein transcription in pheochromocytoma cells[J]. Molecular Pharmacology, 1998, 54(1):59-69. [15] Picciotto MR. Nicotine-mediated activation of signal transduction pathways[J]. Novartis Foundation Symposium, 2008, 275(2):83-95. [16] Lykhmus O, Mishra N, Koval L, et al. Molecular mechanisms regulating LPS-induced inflammation in the brain[J]. Frontiers in Molecular Neuroscience, 2016, 19(9):1-13. [17] Li MD, Kane JK, Wang J, et al. Time-dependent changes in transcriptional profiles within five rat brain regions in response to nicotine treatment[J]. Brain Research Molecular Brain Research, 2004, 132(2):168-180. [18] Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system[J]. Nature Neuroscience, 2003, 6(3):231-242. [19] Wang J, Gutala R, Sun D, et al. Regulation of platelet-derived growth factor signaling pathway by ethanol, nicotine, or both in mouse cortical neurons[J]. Alcoholism Clinical & Experimental Research, 2007, 31(3):357-375. [20] Sokolov BP, Polesskaya OO, Uhl GR. Mouse brain gene expression changes after acute and chronic amphetamine[J]. Journal of Neurochemistry, 2003, 84(2):244-252. [21] Belluzzi JD, Wang R, Leslie FM. Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats[J]. Neuropsychopharmacology, 2005, 30(4):705-712. [22] Quik M, Perez XA, Bordia T. Nicotine as a potential neuroprotective agent for Parkinson's disease[J]. Movement Disorders, 2012, 27(8):947-957. [23] Dineley KT. Nicotinic acetylcholine receptors in Alzheimer’s and Parkinson’s disease[M]. Springer New York, 2014:383-415. [24] Song G, Nesil T, Cao J, et al. Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain[J]. Journal of Neurovirology, 2015, 22(1):114-124. [25] Lin C, Yona JM, Lee BJ, et al. Antiteratogenic effects of β-Carotene in cultured mouse embryos exposed to nicotine[J]. Evidence-based Complementary and Alternative Medicine, 2013, 2013(2):70-75. [26] 王红霞, 何家田, 刘炳玉, 等. 电压依赖性阴离子通道蛋白1和G蛋白N端乙酰化的纳升电喷雾串联质谱分析[C]. 中国蛋白质组学学术大会, 2005. [27] Lykhmus O, Gergalova G, Koval L, et al. Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction[J]. International Journal of Biochemistry & Cell Biology, 2014, 53(7):246-252. |