[1] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4):12-19. [2] 蔡林, 王革娇. 抗砷性微生物及其抗砷分子机制研究进展[J]. 微生物学通报, 2009, 36(8):1253-1259. [3] Krumova K, Nikolovska M, Groudeva V. Isolation and identification of arsenic-transforming bacteria from arsenic-contaminated sites in Bulgaria[J]. Biotechnol Biotechnol Equip, 2008, 22(2):721-728. [4] Zargar K, Hoeft S, Oremland R, et al. Identification of a novel arsenite oxidase gene, arxA, in the Haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1[J]. Journal of Bacteriology, 2010, 192(14):3755-3762. [5] 张潆月, 班允赫, 史荣久, 等. 具有砷(Ⅴ)还原能力的硫酸盐还原菌筛选及生长特性研究[J]. 河南科学, 2015, 33(4):553-558. [6] Cai L, Liu GH, Rensing C, et al. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils[J]. BMC Microbiol, 2009, 9(4):1-11. [7] Jareonmit P, Mehta M, Sadowsky MJ, et al. Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin-mine area in Thailand[J]. World J Microbiol Biotechnol, 2012, 28(5):2287-2292. [8] Paul D, Poddar S, Sar P. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal[J]. J Environ Sci Health Part A-Toxic/Hazardous Substances Environ Eng, 2014, 49(13):1481-1492. [9] Sanyal SK, Mou TJ, Chakrabarty RP, et al. Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic-affected Bangladesh soils[J]. AMB Express, 2016, 6(1):1-11. [10] 韩永和, 王珊珊. 微生物耐砷机理及其在砷地球化学循环中的作用[J]. 微生物学报, 2016, 56(6):901-910. [11] Cavalca L, Corsini A, Zaccheo P, et al. Microbial transformations of arsenic:perspectives for biological removal of arsenic from water[J]. Future Microbiol, 2013, 8(6):753-768. [12] Desoeuvre A, Casiot C, Héry M. Diversity and distribution of arsenic-related genes along a pollution gradient in a river affected by acid mine drainage[J]. Microb Ecol, 2016, 71:672-685. [13] Yang HC, Rosen BP. New mechanisms of bacterial arsenic resistance[J]. Biomed J, 2016, 39(1):5-13. [14] Qin J, Rosen BP, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase[J]. Proc Natl Acad Sci USA, 2006, 103(7):2075-2080. [15] 廖晓勇, 陈同斌, 谢华, 等. 磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J]. 环境科学学报, 2004, 24(3):455-462. [16] 宋书巧, 周永章, 周兴, 等. 土壤砷污染特点与植物修复探讨[J]. 热带地理, 2004, 24(1):6-9. [17] 纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016, 6(1):90-99. [18] Weeger W, Lievremont D, Perret M, et al. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment[J]. Biometals, 1999, 12(2):141-149. [19] 景丽杰, 马甲. 火焰原子吸收分光光度法测定污染土壤中 5 种重金属[J]. 中国土壤与肥料, 2009, 1:74-77. [20] Yanagi M, Yamasato K. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer[J]. FEMS Microbiol Lett, 1993, 107(1):115-20. [21] Kim OS, Cho YJ, Lee K, et al. Introducing EzTaxon-e:a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J]. Int J Sys Evol Microbiol, 2012, 62(3):716-721. [22] Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10):2731-2739. [23] Saitou N, Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4(4):406-425. [24] Inskeep WP, Macur RE, Hamamura N, et al. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes[J]. Environ Microbiol, 2007, 9(4):934-943. [25] Sun YM, Polishchuk EA, Radoja U, et al. Identification and quantification of arsC genes in environmental samples by using real-time PCR[J]. J Microbial Methods, 2004, 58(3):335-349. [26] Escudero LV, Casamayor EO, Chong G, et al. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations[J]. PLoS ONE, 2013, 8(10):e78890. [27] Achour AR, Bauda P, Billard P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria[J]. Res Microbiol, 2007, 158(2):128-137. [28] Jia Y, Huang H, Zhong M, et al. Microbial arsenic methylation in soil and rice rhizosphere[J]. Environ Sci Technol, 2013, 47(7):3141-3148. [29] 康贻军, 程杰, 梅丽娟, 等. 植物根际促生菌的筛选及鉴定[J]. 微生物学报, 2010, 50(7):853-861. [30] 杨婧, 朱永官. 微生物砷代谢机制的研究进展[J]. 生态毒理学报, 2009, 4(6):761-769. [31] Branco R, Chung AP, Morais PV. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24 T [J]. BMC Microbiol, 2008, 8(1):1-12. [32] 管思琪, 罗蕾, 邢辉, 等. 湖南石门磺厂矿区尾矿库抗砷菌株的分离、鉴定及性质研究[J]. 江苏农业科学, 2014, 42(4):300-303. [33] Jackson CR, Dugas SL. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase[J]. BMC Evol Biol, 2003, 3(1):1-10. [34] Sultana M, Vogler S, Zargar K, et al. New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil[J]. Arch Microbiol, 2012, 194(7):623-635. [35] Cordi A, Pagnout C, Devin S, et al. Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community[J]. Environ Sci Poll Res, 2015, 22(18):13753-13763. [36] 洪雪花, 张婉静, 张爱, 等. 环境砷的存在状态、生物转化和修复研究进展[J]. 云南农业大学学报, 2011, 26(4):567-571. [37] Shagol CC, Krishnamoorthy R, Kim K, et al. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea[J]. Environ Sci Pollut Res, 2014, 21(15):9356-9365. [38] 文一, 廖晓勇, 阎秀兰. 链霉菌的抗砷特性及其对蜈蚣草富集砷的作用[J]. 生态毒理学报, 2013, 8(2):186-193. |