Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (6): 69-80.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0012
Previous Articles Next Articles
FU Chen-xi, XIAO Zi-hua, GAO Fei, ZHOU Yi-jun
Received:
2017-01-16
Online:
2017-06-26
Published:
2017-06-19
FU Chen-xi, XIAO Zi-hua, GAO Fei, ZHOU Yi-jun. Proteomics Analysis of Ammopiptanthus mongolicus Leaves Under Drought Stress[J]. Biotechnology Bulletin, 2017, 33(6): 69-80.
[1] Gray SB, Brady SM. Plant developmental responses to climate change[J]. Developmental Biology, 2016, 419(1):64-77. [2] Basu S, Ramegowda V, Kumar A, et al. Plant adaptation to drought stress[J]. F1000Research, 2016, 5:1554. [3] Bray EA. Plant responses to water deficit[J]. Trends in Plant Science, 1997, 2(2):48-54. [4] Khan MS, Khan MA, Ahmad D. Assessing utilization and environmental risks of important genes in plant abiotic stress tolerance[J]. Frontiers in Plant Science, 2016, 7:792. [5] Debnath M, Pandey M, Bisen PS. An omics approach to understand the plant abiotic stress[J]. Omics:a Journal Of Integrative Biology, 2011, 15(11):739-762. [6] Wang X, Cai X, Xu C, et al. Drought-responsive mechanisms in plant leaves revealed by proteomics[J]. International Journal of Molecular Sciences, 2016, 17(10):pii:E1706. [7] 刘果厚. 阿拉善荒漠特有植物沙冬青濒危原因的研究[J]. 植物研究, 1998, 18(3):341-345. [8] 周宜君, 高飞, 冯金朝, 等. 民族地区沙冬青种质资源保护与利用[J]. 安徽农业科学, 2011, 39(10):5851-5853. [9] Gao F, Wang J, Wei S, et al. Transcriptomic analysis of drought stress responses in Ammopiptanthus mongolicus leaves using the RNA-Seq technique[J]. PLoS One, 2015, 10(4):e0124382. [10] Wu Y, Wei W, Pang X, et al. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses[J]. BMC Genomics, 2014, 15(1):1-16. [11] 郭婷, 王茅雁, 董博, 等. 蒙古沙冬青AmDREB2C基因的克隆及表达分析[J]. 植物遗传资源学报, 2015, 16(2):344-348. [12] 李章磊, 高飞, 曹玉震, 等. 蒙古沙冬青AmDREB2. 1基因的克隆及表达分析[J]. 生物技术通报, 2015(3):108-114. [13] Gao F, Wang N, Li H, et al. Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing[J]. Scientific Reports, 2016, 6:34601. [14] 刘楠, 高飞, 周宜君, 等. 蒙古沙冬青根蛋白的提取及双向电泳体系的建立[J]. 北京师范大学学报:自然科学版, 2013, 49(4):365-368. [15] Mathesius U, Keijzers G, Natera SHA, et al. Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting[J]. Proteomics, 2001, 1(11):1424-1440. [16] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254. [17] Rabilloud T. Silver staining of 2D electrophoresis gels[J]. Quantitative Methods in Proteomics, 2012, 893:61-73. [18] Du Z, Zhou X, Ling Y, et al. agriGO:a GO analysis toolkit for the agricultural community[J]. Nucleic Acids Research, 2010, 38:W64-W70. [19] Xie C, Mao X, Huang J, et al. KOBAS 2. 0:a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39:W316-W322. [20] Bevan M, Bancroft I, Bent E, et al. Analysis of 1. 9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391(6666):485-488. [21] Zhao Q, Gao J, Suo J, et al. Cytological and proteomic analyses of horsetail(Equisetum arvense L. )spore germination[J]. Frontiers in Plant Science, 2015, 6:441. [22] Briesemeister S, Rahnenführer J, Kohlbacher O. YLoc-an interpre-table web server for predicting subcellular localization[J]. Nucleic Acids Research, 2010, 38:W497-W502. [23] Briesemeister S, Rahnenführer J, Kohlbacher O. Going from where to why-interpretable prediction of protein subcellular localization[J]. Bioinformatics, 2010, 26(9):1232-1238. [24] Goldberg T, Hecht M, Hamp T, et al. LocTree3 prediction of localization[J]. Nucleic acids research, 2014, 42(W1):W350-W355. [25] Chou KC, Shen HB. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6):e11335. [26] King BR, Guda C. ngLOC:an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes[J]. Genome Biology, 2007, 8(5):1. [27] Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. Journal of Molecular Biology, 2000, 300(4):1005-1016. [28] Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10:protein-protein interaction networks, integrated over the tree of life[J]. Nucleic Acids Research, 2014, 43:D447-D452. [29] Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2. 8:new features for data integration and network visualization[J]. Bioinformatics, 2011, 27(3):431-432. [30] Bohler S, Sergeant K, Jolivet Y, et al. A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought[J]. Proteomics, 2013, 13(10-11):1737-1754. [31] Wang Y, Yang L, Chen X, et al. Major latex protein-like protein 43(MLP43)functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2015, 67(1):421-434. [32] Shu L, Lou Q, Ma C, et al. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought[J]. Proteomics, 2011, 11(21):4122-4138. [33] Zhang S, Chen F, Peng S, et al. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress[J]. Proteomics, 2010, 10(14):2661-2677. [34] Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation[J]. Journal of Biological Chemistry, 2013, 288(40):29056-29068. [35] Bricker T M, Frankel LK. Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II:a critical analysis[J]. Journal of Photochemistry and Photobiology B:Biology, 2011, 104(1):165-178. [36] Wilde A, Lünser K, Ossenbühl F, et al. Characterization of the cyanobacterial ycf37:mutation decreases the photosystem I content[J]. Biochemical Journal, 2001, 357(1):211-216. [37] Demirevska K, Zasheva D, Dimitrov R, et al. Drought stress effects on Rubisco in wheat:changes in the Rubisco large subunit[J]. Acta Physiologiae Plantarum, 2009, 31(6):1129-1138. [38] Ebrahimzadeh H. Drought stress increases the expression of wheat leaf ribulose-1, 5-bisphosphate carboxylase/oxyenase protein[J]. Iranian Journal of Science and Technology(Sciences), 2006, 30(1):1-7. [39] Zadražnik T, Hollung K, Egge-Jacobsen W, et al. Differential proteomic analysis of drought stress response in leaves of common bean(Phaseolus vulgaris L. )[J]. Journal of Proteomics, 2012, 78(1):254-272. [40] Zaffagnini M, Michelet L, Sciabolini C, et al. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii[J]. Molecular Plant, 2014, 7(1):101-120. [41] Budak H, Akpinar B A, Unver T, et al. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS[J]. Plant Molecular Biology, 2013, 83(1):89-103. [42] Durand T C, Sergeant K, Renaut J, et al. Poplar under drought:comparison of leaf and cambial proteomic responses[J]. Journal of Proteomics, 2011, 74(8):1396-1410. [43] Ye T, Shi H, Wang Y, et al. Contrasting changes caused by drought and submergence stresses in bermudagrass(Cynodon dactylon)[J]. Frontiers in Plant Science, 2015, 6:951. [44] Yamauchi Y, Hasegawa A, Mizutani M, et al. Chloroplastic NADPH-dependent alkenal/one oxidoreductase contributes to the detoxification of reactive carbonyls produced under oxidative stress[J]. FEBS Letters, 2012, 586(8):1208-1213. [45] Schürmann P, Jacquot JP. Plant thioredoxin systems revisited[J]. Annual Review of Plant Biology, 2000, 51(1):371-400. [46] Hajheidari M, Abdollahian-Noghabi M, Askari H, et al. Proteome analysis of sugar beet leaves under drought stress[J]. Proteomics, 2005, 5(4):950-960. [47] Tugal HB, Pool M, Baker A. Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization[J]. Plant Physiology, 1999, 120(1):309-320. [48] Ashoub A, Beckhaus T, Berberich T, et al. Comparative analysis of barley leaf proteome as affected by drought stress[J]. Planta, 2013, 237(3):771-781. [49] Jiang Q, Mei J, Gong XD, et al. Importance of the rice TCD9 encoding α subunit of chaperonin protein 60(Cpn60α)for the chloroplast development during the early leaf stage[J]. Plant Science, 2014, 215-216:172-179. [50] Dickson R, Weiss C, Howard RJ, et al. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding[J]. Journal of Biological Chemistry, 2000, 275(16):11829-11835. [51] Hennessy F, Nicoll W S, Zimmermann R, et al. Not all J domains are created equal:implications for the specificity of Hsp40-Hsp70 interactions[J]. Protein Science, 2005, 14(7):1697-1709. [52] Weisman R, Creanor J, Fantes P. A multicopy suppressor of a cell cycle defect in S. pombe encodes a heat shock-inducible 40 kDa cyclophilin-like protein[J]. Embo Journal, 1996, 15(3):447-456. [53] Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress[J]. Mol Cell Proteomics 2007, 6:1868-1884. [54] Akashi K, Yoshida K, Kuwano M, et al. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus(wild watermelon), in response to water deficit[J]. Planta, 2011, 233(5):947-960. [55] 王彦杰, 张超, 王晓庆, 等. 牡丹泛素延伸蛋白基因片段克隆与表达分析[J]. 扬州大学学报:农业与生命科学版, 2013(1):79-83. [56] Wan X, Mo A, Liu S, et al. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression[J]. Journal of Bioscience and Bioengineering, 2011, 111(4):478-484. [57] Heidarvand L, Maaliamiri R. Physio-biochemical and proteome analysis of chickpea in early phases of cold stress[J]. Journal of Plant Physiology, 2013, 170(5):459-469. [58] Krojer T, Sawa J, Schäfer E, et al. Structural basis for the regulated protease and chaperone function of DegP[J]. Nature, 2008, 453(7197):885-890. [59] Haußühl K, Andersson B, Adamska I. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II[J]. The EMBO Journal, 2001, 20(4):713-722. [60] Lee U, Rioflorido I, Hong SW, et al. The Arabidopsis ClpB/Hsp100 family of proteins:chaperones for stress and chloroplast development[J]. The Plant Journal, 2007, 49(1):115-127. [61] Wu D, Shen Q, Qiu L, et al. Identification of proteins associated with ion homeostasis and salt tolerance in barley[J]. Proteomics, 2014, 14(11):1381-1392. [62] Yang L, Zhang Y, Zhu N, et al. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14[J]. Journal of Proteome Research, 2013, 12(11):4931-4950. [63] Lee K, Kang H. Emerging roles of RNA-binding proteins in plant growth, development, and stress responses[J]. Molecules & Cells, 2016, 39(3):179-185. |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[3] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[4] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[5] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[6] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[7] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[8] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[9] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[10] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[11] | DENG Jia-hui, LEI Jian-feng, ZHAO Yi, LIU Min, HU Zi-yao, YOU Yang-zi, SHAO Wu-kui, LIU Jian-fei, LIU Xiao-dong. Construction of a New Mini Genome Editing System Based on Csy4 and MCP [J]. Biotechnology Bulletin, 2023, 39(10): 68-79. |
[12] | ZHANG Yu-han, FAN Yi, LI Ting-ting, PANG Shuang, LIU Wei, BAI Ke-yu, ZHANG Xi-mei. Microbial Enrichment on Leaf Surface and DNA Extraction Method Based on the Metagenomics Sequencing [J]. Biotechnology Bulletin, 2022, 38(3): 256-263. |
[13] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
[14] | ZHAO Yi, LEI Jian-feng, LIU Min, HU Zi-yao, DAI Pei-hong, LIU Chao, LI Yue, LIU Xiao-dong. Research on the Carrying Capacity of CLCrV-mediated VIGE System [J]. Biotechnology Bulletin, 2022, 38(11): 210-219. |
[15] | MO Li-jie, LIU Xia-tong, LI Hui, LU Hai. On the Function of Plant Cysteine Protease in Plant Growth and Development [J]. Biotechnology Bulletin, 2021, 37(6): 202-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||